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Abstract

Aedes albopictus is an invasive mosquito species that has spread globally and can transmit

several arboviruses, including dengue, chikungunya and yellow fever. The species was first

reported in Brazil in 1986 and since then has been found in 24 of the 27 Brazilian states,

often in peri-urban environments close to highly urbanized areas. To date, population genet-

ics of this important mosquito in areas in the city of São Paulo has not been investigated. In

this study, we used 12 microsatellite loci to investigate the microgeographic population

genetics of Ae. albopictus, which is present throughout the city of São Paulo. All the analy-

ses revealed structuring of the populations studied, divided into two groups with restricted

gene flow between them and without evidence of isolation by distance. We propose two

hypotheses to explain the results: (i) low dispersal capability—limited gene flow between

populations is due to the low dispersal capability inherent to Ae. albopictus; and (ii) multiple

introductions—the structure identified here results from multiple introductions, which led to

different dispersal patterns within the city and more genetic heterogeneity. The ability of Ae.

albopictus to invade new areas and expand may explain why these mosquito populations

appear to be well established and thriving in the city of São Paulo.

Introduction

There are currently more humans living in urban areas than ever in the history of civilization

[1]. As a consequence of this escalating urbanization, significant environmental changes are

taking place, resulting, among other things, in increasing temperatures and pollution of the

natural environment [2,3].

Inhabiting urban areas is challenging for most species. However, invasive species are more

likely to thrive in such environments than native species [2]. Furthermore, urbanization pro-

cesses often result in a reduction in overall biodiversity followed by an increase in the abun-

dance of the invasive species that have adapted to the urban environment [2,4]. This

phenomenon is commonly observed in epidemiologically important mosquito species [4–6].
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Mosquito species that have adapted to urban environments can not only be a source of nui-

sance but also transmit diseases, as in the case of Aedes (Stegomyia) albopictus (Skuse), an

aggressive species well adapted to urban environments. This mosquito can breed in artificial

containers (e.g., tires and cemetery urns) and blood feed on human hosts, completing its entire

life cycle in urban environments [7–9].

Aedes albopictus is native to Asia and has spread to all continents except Antarctica, most

likely because of its close relationship with humans [10,11]. As this mosquito undergoes dia-

pause, its eggs can survive for months in artificial breeding containers until the environmental

conditions are suitable for hatching and its life cycle can begin [12,13]. This has allowed Ae.

albopictus to colonize new areas by being inadvertently dispersed in used tires imported from

other countries [14,15]. The species’ adaptability to temperate climates [16–18] and resistance

to several insecticides have also favored colonization [19–21].

Aedes albopictus was established in Brazil in 1986 and since then has spread to most of the

country, where it is often found in suburban areas with higher vegetation coverage [22,23].

However, a recent entomological survey demonstrated initial evidence of Ae. albopictus domi-

ciliation in a densely populated slum in Rio de Janeiro. The presence of the species in such an

environment could indicate its increased adaptation to areas undergoing anthropogenic

changes in Brazil [24].

Aedes albopictus is a competent vector for several arboviruses, including dengue (DENV),

chikungunya (CHIKV), Zika (ZIKV) and yellow fever (YFV) [25–30], and was implicated as a

primary vector for the CHIKV outbreak in Italy in which 205 cases were notified between July

and September 2007 and one death was reported [31].

Even though the species is not implicated in dengue transmission in Brazil, the DENV-1

serotype has been isolated from its larvae [32]. In addition, ZIKV RNA fragments were found

in field-collected eggs of Ae. albopictus in the state of Bahia, Brazil, in an active ZIKV transmis-

sion zone [27]. It is also possible that the species is acting as a bridge vector between wild and

urban YFV transmission cycles in Brazil, as specimens infected with YFV were recently found

in yellow-fever hotspots in two municipalities in the state of Minas Gerais, Brazil [33,34].

Urbanization processes are often responsible for driving the genetic diversity within urban

populations of mosquitoes [2,6]. This phenomenon is undoubtedly occurring in mosquito spe-

cies such as Aedes aegypti, Aedes fluviatilis, Culex nigripalpus, and Culex quinquefasciatus in

the city of São Paulo, Brazil [35–38]. São Paulo is a megacity with approximately 12 million

people in the center of a metropolitan area with a population of more than 20 million [39].

Thus, identifying the genetic structure of the exotic mosquito Ae. albopictus in São Paulo

could lead to a better understanding of how anthropogenic changes to the environment in

developing countries such as Brazil are modulating the population structure of this species and

the implications of this for vector-borne disease transmission patterns [36,40].

Population genetic studies of Ae. albopictus have been carried out as this species continues

to spread worldwide [8,40–43]. A population-structuring study of Ae. albopictus in Manaus,

Brazil, found that populations of this species have undergone a recent expansion following a

founder effect [44]. Moreover, studies of populations of the species in cities where it has

recently become established have shown weak genetic structure and high gene flow, suggesting

a dispersal pattern driven mostly by human movements [40,45].

Microsatellite markers are highly polymorphic genetic markers widely used in mosquito

population genetics studies [46–48]. Previous studies using these markers provide valuable

information on the microgeographic genetic structure of vector mosquitoes in São Paulo, Bra-

zil [35–37]. Considering the high abundance and widespread presence of the invasive species

Ae. albopictus in São Paulo [5], we hypothesize that it is successfully thriving in urban and
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peri-urban areas. The primary objective of this study was therefore to investigate the micro-

geographic population genetics of Ae. albopictus throughout the city of São Paulo.

Material and methods

Specimen collection

Aedes albopictus samples were collected from 10 urban parks (Anhanguera, Piqueri, Trianon,

Burle Marx, Guarapiranga, Ibirapuera, Previdência, Shangrilá, Independência and Nabuco) in

different areas of the city of São Paulo (Table 1) [5,49,50]. The parks are relatively small green

urban spaces within highly urbanized areas of the city [5] and were chosen because of the need

for collection sites in urbanized areas with high population densities where the traps were

unlikely to be tampered with and the researchers would not be exposed to any dangers (Fig 1).

Mosquito collections were performed monthly from March 2011 to February 2012 and

August 2012 to July 2013. Adult mosquitoes were collected with portable, battery-powered

aspirators and CDC CO2-baited light traps [51,52]. Mosquitoes were collected over a one-year

period in different locations within each urban park. When possible, 30 specimens were

selected randomly from each collection site to avoid bias introduced by analyzing siblings

(Table 1). The study was approved by the Ethics Committee of the University of São Paulo,

and collection permits were provided by the Department of the Environment and Green

Areas.

DNA extraction and PCR reactions

DNA was extracted using the DNEasy Blood and Tissue Kit (Qiagen, Hilden, Germany) fol-

lowing the manufacturer’s protocol. Twelve microsatellite primers labeled with a fluorescent

dye (FAM, HEX or NED) and 1μL (~1ng) of purified DNA were used in the PCR reactions,

which were performed as described before [41] in an E6331000025 Eppendorf Thermocycler

(Mastercycler Nexus Gradient, Eppendorf, Hamburg, Germany) (S1 Table). Amplified frag-

ments were visualized on a 1% agarose gel stained with GelRed Nucleic Acid Gel Stain (Bio-

tium, Hayward, CA, USA) and examined under UV light. PCR products were diluted 1:7 by

mixing 3 μL of each product labeled with a different dye with 21 μL of Ultra-Pure Water

(Applied Biosystems, Foster City, CA, USA) to a final volume of 30 μL, and 2 μL of the dilution

was suspended in 8.925 μL of Hi-Di formamide (Applied Biosystems, Foster City, CA, USA)

Table 1. Aedes albopictus sampling information.

Collection Site Coordinates N Year

ANH 23˚25’12.42"S 46˚46’55.39"W 30 2012

BMX 23˚37’54.06"S 46˚43’16.81"W 19 2013

PQR 23˚31’41.23"S 46˚34’26.65"W 30 2013

TRI 23˚33’42.53"S 46˚39’27.96"W 15 2011

GRP 23˚40’33.10"S 46˚44’3.71"W 30 2011

IBI 23˚35’14.70"S 46˚39’27.48"W 29 2012

IND 23˚35’2.99"S 46˚36’35.38"W 30 2011

PRV 23˚34’51.09"S 46˚43’37.94"W 30 2013

SHG 23˚45’41.67"S 46˚40’6.58"W 28 2012

NBC 23˚39’45.18"S 46˚39’33.84"W 30 2011

Anhanguera (ANH), Burle Marx (BMX), Piqueri (PQR), Trianon (TRI), Guarapiranga (GRP), Ibirapuera (IBI),

Independência (IND), Previdência (PRV), Shangrilá (SHG) and Nabuco (NBC).

https://doi.org/10.1371/journal.pone.0220773.t001
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and 0.075 μL of GeneScan 500 ROX size standard (Applied Biosystems, Foster City, CA, USA)

to a final volume of 11 μL. The samples were then sent to the University of São Paulo Center

for Human Genome Studies and size-sorted in an ABI 3730 automatic sequencer (Applied

Biosystems, Foster City, CA, USA). Fragment analysis was performed using GeneMarker

v1.85 (SoftGenetics, State College, PA, USA).

Genetic analysis

To assess the validity of the microsatellite markers, the number of alleles per locus per popula-

tion, observed heterozygosity (HO), expected heterozygosity (HE), deviations from Hardy-

Weinberg equilibrium (HWE) and inbreeding coefficient (FIS) were calculated with the diveR-

sity v3.4.0 package in R [53,54]. Linkage disequilibrium was assessed with Genepop v4.2

(http://genepop.curtin.edu.au/) [55], and HP-Rare 1.0 [56] was used to assess allelic richness

and private allelic richness in the populations. Multiple tests were corrected using Bonferroni

correction method.

Null-allele frequency was assessed for each locus for each population using FreeNA [57]. In

order to test if the null alleles influenced the values of genetic heterogeneity (FST), the same

software was used to estimate values of FST unbiased by the presence of null alleles. Mantel test

was used to compare both FST values (biased and unbiased) with ade4 package in R [53,58]

using 9,999 permutations.

To compute pairwise values of FST (fixation index) and the heterozygosity-based estimator

G”ST for measure population structure of all populations, as proposed by Meirmans and

Hedrick [59], the diveRsity package [54] (v3.4.0) in R was used. To assess the gene flow

between populations, a genetic network based on a genotype matrix constructed with FST val-

ues was generated using EDENetworks (v2.18) [60]. Analysis of molecular variance (AMOVA)

was performed in Arlequin v3.5.1.2 [61] to detect population differentiation. To test for Isola-

tion by distance, a Mantel test between genetic distance (FST/(1-FST)) and geographic distance

in kilometers was calculated with ade4 package in R [53,58] using 9,999 permutations.

A Bayesian model-based clustering analysis in STRUCTURE (v2.3.3) was used to infer pop-

ulation structure [62]. Simulations were performed using 100,000 Markov Chain Monte Carlo

iterations, with a burn-in period of 100,000 and 10 runs for each value of K (1–10), the analysis

was performed assuming Admixture model and correlated allele frequencies between popula-

tions. The estimated number of clusters K (ΔK), which identifies genetically homogeneous

groups of individuals, was calculated with StructureHarvester (Web v0.6.94) [63].

Discriminant analysis of principal components (DAPC) was used to further assess genetic

structure between populations. DAPC was implemented in R using Adegenet package [53,64]

for the whole dataset, where groups membership was defined by K = 2 and K = 3. Only popula-

tions that were genetically similar were grouped together, which was confirmed using STRUC-

TURE and pairwise tests for genetic distance (FST and G”ST) for all populations. A cross-

validation analysis was performed in Adegenet using 30 replicates to determine the number of

PCs to be retained in the DAPC, the analysis suggested 60 as the number of PCs associated

with the lowest root mean squared error.

Fig 1. Map of the subdistricts of the city of São Paulo, Brazil, showing the parks where Aedes albopictus specimens were collected. Anhanguera

(ANH), Burle Marx (BMX), Piqueri (PQR), Trianon (TRI), Guarapiranga (GRP), Ibirapuera (IBI), Independência (IND), Previdência (PRV),

Shangrilá (SHG) and Nabuco (NBC). The map was created with QGIS v2.18.9 (http://www.qgis.org) using layers freely available at http://geosampa.

prefeitura.sp.gov.br/PaginasPublicas/_SBC.aspx#. The layers used to the construction of the map were “Administrative limits–District” and “Green

Natural Resources–PMMA”.

https://doi.org/10.1371/journal.pone.0220773.g001
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Results

Marker validation

Hardy-Weinberg equilibrium (HWE) tests conducted for each locus in each population

showed HE (expected heterozygosity) greater than HO (observed heterozygosity) in 89% of the

conducted tests, indicating deviations from the HWE. Average FIS (inbreeding coefficient) was

0.57072 (S2 Table). After 660 possible comparisons for linkage disequilibrium (LD), 31 tests

were statistically significant (P<0.05). However, these results could have been produced by

chance, as after Bonferroni correction no loci were linked together across the tested

populations.

Allelic richness ranged from 1 (NBC) to 13.34 (BMX), and average private allelic richness

was low, varying from 0.12 (SHG) to 1.95 (BMX) (S2 Table). Estimated null-allele frequency in

the populations was high (>0.40) for locus Di-6 in one population from ten, Tri-18 in three

from ten, Tri-20 in five from ten, Tri-41 and Tri-46 in one from ten. The remaining loci

yielded a frequency of 0.30 or lower. Locus Tri-44 had a null-allele frequency of zero (S3

Table). There were no significant differences between FST values biased and unbiased by the

presence of null alleles (r = 0.8698, P = 0.001).

Genetic distance

Pairwise estimates of the fixation index (FST) and the heterozygosity-based estimator (G”ST)

revealed similar results (Table 2). While FST values ranged from 0.0047 to 0.1685, indicating

that there is some degree of structuring among the populations, G”ST values were higher (from

0.0525 to 0.446), indicating a high degree of structuring. The lowest FST values were observed

between samples collected at GRP, IND, SHG, PRV, and IBI and ranged from 0.0047 to

0.0396, suggesting that these populations are very similar to each other and different from the

others. The same was observed for G”ST, which ranged from 0.0525 to 0.1494 for the same pop-

ulations. Although the values of G”ST were higher than those of FST, the relationship between

Ae. albopictus populations were similar for both estimators.

The genetic network separates the populations into three groups (Fig 2), one composed of

GRP, IND, SHG, PRV and IBI, in which significant gene flow occurs between all the popula-

tions, and another connecting populations IBI and PQR and composed of ANH, BMX, and

TRI, which are connected by PQR. The analysis showed population NBC completely segre-

gated from the others.

Table 2. Pairwise FST (Weir & Cockerham 1984) estimates (below diagonal) and pairwise G”ST (Meirmans & Hedrick 2011) estimates (above diagonal) for Aedes
albopictus populations.

Pop ANH BMX PQR TRI GRP IBI IND PRV SHG NBC

ANH - 0.1948 0.115 0.2436 0.1954 0.176 0.2006 0.2081 0.1824 0.355

BMX 0.042 - 0.1952 0.3552 0.3676 0.3118 0.3403 0.354 0.2912 0.446

PQR 0.0222 0.0361 - 0.1469 0.2989 0.2203 0.279 0.282 0.2531 0.3997

TRI 0.0535 0.0723 0.0237 - 0.3351 0.2286 0.3142 0.3437 0.2661 0.4397

GRP 0.055 0.104 0.0802 0.0931 - 0.1494 0.089 0.124 0.0648 0.2575

IBI 0.0426 0.0749 0.0497 0.049 0.0396 - 0.0971 0.0525 0.0694 0.2582

IND 0.0536 0.0898 0.0703 0.0805 0.0206 0.0196 - 0.063 0.0579 0.2525

PRV 0.0565 0.095 0.072 0.0907 0.0337 0.0047 0.01 - 0.0569 0.2723

SHG 0.0464 0.0726 0.0611 0.0633 0.0107 0.009 0.0069 0.0068 - 0.2231

NBC 0.134 0.1685 0.1407 0.1689 0.1053 0.0974 0.0992 0.1087 0.0851 -

https://doi.org/10.1371/journal.pone.0220773.t002
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AMOVA showed that 90.80% of the variance was estimated to be within populations (S4

Table). Mantel test showed no correlation between genetic distance (FST/(1-FST)) and geo-

graphic distance (S5 Table), indicating no evidence of isolation by distance (IBD) (r = -0.0262;

P = 0.5933).

Fig 2. Genetic network based on FST values for the Aedes albopictus populations in São Paulo studied here. Each node represents a population. The red

node represents the populations with most connections. The node size represents the levels of similarity (nearest routes) between populations. The thickness of

the lines represents the estimated coancestry coefficient based on FST values; the larger the coefficient, the thicker the line.

https://doi.org/10.1371/journal.pone.0220773.g002
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Bayesian cluster analysis

The results of the Bayesian cluster analysis and subsequent application of the Evanno method

were used to identify the most likely number of genetic groups, which was two according to

the ΔK estimator (S1 Fig). The analysis using K = 2 displayed two well defined genetic clusters,

one comprising the populations ANH, BMX, PQR, and TRI (red) and the second, comprising

GRP, IBI, IND, PRV, SHG, and NBC (green) (Fig 3A). The subsequent analysis using K = 3

resulted in similar results with high genetic similarity within the groups of populations but

with the segregation of NBC from the green cluster into a completely independent new genetic

cluster (blue) (Fig 3B).

Multivariate statistical analysis

DAPC explained 94% of the variance in the data, which was capable of partitioning the genetic

variation in K = 2 and K = 3 similarly to STRUCTURE analysis (Fig 3). The relationships

between populations identified in STRUCTURE analysis and DAPC were consistent with the

results obtained with the genetic distance estimators FST and G”ST, and the genetic network.

Discussion

Aedes albopictus, a highly anthropophilic species whose dispersal around the world is known

to have been mediated by humans [11], has a very close relationship with humans and has

high blood-feeding rates in urban areas. Moreover, urban areas can favor faster larval and

Fig 3. Genetic structure of Aedes albopictus populations from São Paulo. Discriminant analysis of the principal components (DAPC) and Bayesian analysis

using STRUCTURE for all the Aedes albopictus populations, showing the subdivisions for K = 2 (A) and K = 3 (B). Each of the 270 individuals from nine

populations is represented by a vertical line divided into different colored segments. The length of each segment represents the probability of the individual

belonging to the genetic cluster represented by that color.

https://doi.org/10.1371/journal.pone.0220773.g003
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pupal development of immature specimens of the species [11,65]. Although some studies have

suggested that different levels of urbanization may influence the genetic structure of Ae. albo-
pictus [43,66,67], to date only a handful of studies have addressed this phenomenon at the

microscale level [45]. The present study, therefore, investigated the population genetics of Ae.

albopictus at the microscale level, considering the distribution of populations of this species in

a city.

Our findings suggest all analyses showing the same genetic structuring pattern between the

populations: two distinct groups of populations with limited gene flow between them. Both the

FST and G”ST estimators revealed the same relationships between the populations, indicating a

high level of structuring between the two groups. DAPC and STRUCTURE analysis revealed

high genetic diversity between the two population groups and high similarities within the

groups. Furthermore, no evidence of IBD was found for the populations, indicating that the

source of genetic variation detected could be other than geographic distance.

Our findings also revealed high levels of homozygosis, high values estimated by the inbreed-

ing coefficient, deviations from the HWE and high molecular variability within the Ae. albopic-
tus populations, suggesting that the genetic variation between populations probably occurs at a

low hierarchical level. Similar results were previously found for native and invasive Ae. albopic-
tus [8,68], indicating that this is a characteristic of the species and a globally shared pattern

[43]. Previous studies have also shown that urbanization and high human population densities

may influence the genetic structure of Ae. albopictus populations [43,66].

The deviations from HWE found in this study were consistent with the pressures Ae. albo-
pictus populations are probably undergoing in the city of São Paulo. Processes of population

expansion following founder effects are particularly important since they are known for lead-

ing to deviations in the HWE. Moreover, although the null alleles probabilities for some loci

were considered high (>40%), it did not influence the final results, and removing loci with

high probabilities did not enhance the results. The presence of null alleles is common in stud-

ies using microsatellite markers and are not believed to invalidate the results [47,69,70]. Simi-

lar results were also found for Ae. fluviatilis and Ae. aegypti collected in the same region

[35,36]. Moreover, the high values of inbreeding estimated for the populations studied here

agree with other studies [8,68,71]. These values may be explained by the restricted gene flow

between populations initially founded by a small number of specimens [43].

Therefore, we believe that there are two hypotheses to explain the pattern of genetic struc-

ture in the populations studied here. The first one of the probable causes of the genetic struc-

turing is the limited gene flow between populations due to the low dispersal capability

inherent to Ae. albopictus [43]. A study that screened for SNPs (single nucleotide polymor-

phisms) in Ae. albopictus populations worldwide showed the Brazilian populations to be a

monophyletic group. The authors suggested that the samples analyzed were derived from a

single Ae. albopictus invasion by a native population from South-East Asia [11]. However, the

three Brazilian populations analyzed in the study were from the North and Northeast regions,

which are very far from the areas where the populations analyzed here were sampled.

Previous studies have suggested that the dispersal pattern of Ae. albopictus populations may

have been chaotic and that this may have played a role in maintaining genetic diversity in inva-

sive populations around the world [72]. Our second hypothesis is therefore that multiple intro-

ductions of Ae. albopictus probably occurred. Under this hypothesis, the population structure

found in this study is due to multiple introductions of Ae. albopictus in the city of São Paulo,

leading to different dispersal patterns within the city and more genetic heterogeneity. Manni

et al. [72], postulated that multiple introductions could increase genetic diversity, favoring

expansion and adaptation. The restriction on gene flow between the population groups

observed here may also mean that more than one introduction occurred, as the city was

Population structuring of Aedes albopictus on a microgeographic scale
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already vast in 1986 when this species was first introduced and its topography may have acted

as a barrier to gene flow.

There are several mechanisms able to increase or decrease the genetic variation in a given

population [73]. Invading and colonizing new areas may have distinct outcomes due to envi-

ronmental heterogeneity and how local resources can be explored by the invasive species [43].

Moreover, human behavior can actively drive the dispersal of Ae. albopictus, substantially

impacting its population dynamics and genetic diversity patterns [74]. At this point, there is

no scientific consensus on the outcome of population expansion in the genetic structuring of

Ae. albopictus. In our opinion, the two hypotheses suggested here could be explored by future

studies by focusing on broader geographic scales and also employing longitudinal experimen-

tal designs. This approach would make it possible to identify trends of founder effect and pop-

ulation expansion, and movement and subsequent colonization of new areas by Ae. albopictus.
Previous studies suggested that Ae. albopictus populations have reduced gene flow between

densely urbanized areas and rural areas [8,45]. A similar phenomenon was observed in the inva-

sive mosquito Ae. aegypti in the city of São Paulo [36]. However, a positive association between

a decrease in genetic structure and an increase in urbanization was found for species native to

Brazil, such as Ae. fluviatilis and Cx. nigripalpus [35,38]. This contrast between the genetic struc-

ture of native and invasive species may indicate that invasive species are better able to adapt and

thrive in urban environments, an advantage that is clearly of epidemiological relevance.

Although the invasive mosquito Ae. aegypti had been eradicated from Brazil, it reinfested

the country in the 1970s [75,76]. The species rapidly recolonized the whole country, displaying

genetic structuring even on a microgeographic scale [36,77], and is now the primary vector of

ZIKV, CHIKV, and DENV in Brazil [78]. The same phenomenon is likely to have occurred

with Ae. albopictus as this mosquito was first recorded in Brazil in 1986 and approximately 30

years later had spread to 24 of the 27 Brazilian states [20].

Aedes albopictus, which is widespread in Brazil, probably entered the country through the

port of Espı́rito Santo and was then passively dispersed in cargo transported on highways, as it

was first reported on the Rio-São Paulo highway in 1986 [12,22]. Although the species is found in

sylvatic and peri-urban areas in Brazil, its distribution is closely associated with the presence of

humans, and it can move quickly between sylvatic and urban environments [7,24]. The ability of

Ae. albopictus to invade new areas and expand explains why these mosquito populations appear

to be well established and thriving in the city of São Paulo. Human movements throughout the

city and the lack of large-scale mosquito control measures in Brazil have probably favored the dis-

persal and establishment of this species in the city. These factors, together with the epidemiologi-

cal importance of this mosquito, highlight the need for further studies of the population genetics

of this species in Brazil focusing on broader geographic scales and longitudinal experimental

designs. Aedes albopictus populations are genetically diverse and can diverge in their ecology and

behavior, affecting their resistance to insecticides and vector capacity, among other factors.
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24. Ayllón T, Câmara DCP, Morone FC, Gonçalves L da S, Saito Monteiro de Barros F, Brasil P, et al. Dis-

persion and oviposition of Aedes albopictus in a Brazilian slum: Initial evidence of Asian tiger mosquito

Population structuring of Aedes albopictus on a microgeographic scale

PLOS ONE | https://doi.org/10.1371/journal.pone.0220773 August 2, 2019 12 / 15

https://doi.org/10.1038/s41598-017-18208-x
http://www.ncbi.nlm.nih.gov/pubmed/29259304
https://doi.org/10.1111/gcb.13091
http://www.ncbi.nlm.nih.gov/pubmed/26367396
https://doi.org/10.12688/wellcomeopenres.14659.3
https://doi.org/10.12688/wellcomeopenres.14659.3
http://www.ncbi.nlm.nih.gov/pubmed/30175244
https://doi.org/10.1371/journal.pntd.0002111
https://doi.org/10.1371/journal.pntd.0002111
http://www.ncbi.nlm.nih.gov/pubmed/23556012
https://doi.org/10.1002/ece3.3514
http://www.ncbi.nlm.nih.gov/pubmed/29238544
https://doi.org/10.1089/vbz.2006.0562
https://doi.org/10.1089/vbz.2006.0562
http://www.ncbi.nlm.nih.gov/pubmed/17417960
https://doi.org/10.1016/j.ijid.2017.11.026
http://www.ncbi.nlm.nih.gov/pubmed/29196275
https://doi.org/10.1186/s13071-017-2089-5
https://doi.org/10.1186/s13071-017-2089-5
http://www.ncbi.nlm.nih.gov/pubmed/28347326
https://doi.org/10.1590/s0034-89101986000300009
http://www.ncbi.nlm.nih.gov/pubmed/3809982
https://doi.org/10.1371/journal.pone.0157120
http://www.ncbi.nlm.nih.gov/pubmed/27322537
https://doi.org/10.1371/journal.pone.0220773


domiciliation in urban environments. PLoS One. 2018; 13: e0195014. https://doi.org/10.1371/journal.

pone.0195014 PMID: 29684029

25. Lambrechts L, Scott TW, Gubler DJ. Consequences of the Expanding Global Distribution of Aedes albo-

pictus for Dengue Virus Transmission. PLoS Negl Trop Dis. 2010; 4: e646. https://doi.org/10.1371/

journal.pntd.0000646 PMID: 20520794

26. Pagès F, Peyrefitte CN, Mve MT, Jarjaval F, Brisse S, Iteman I, et al. Aedes albopictus Mosquito: The

Main Vector of the 2007 Chikungunya Outbreak in Gabon. Carter DA, editor. PLoS One. 2009; 4:

e4691. https://doi.org/10.1371/journal.pone.0004691 PMID: 19259263

27. Smartt CT, Stenn TMS, Chen TY, Teixeira MG, Queiroz EP, Souza Dos Santos L, et al. Evidence of

zika virus RNA fragments in Aedes albopictus (Diptera: Culicidae) field-collected eggs from Camaçari,
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