ANTONIO MARCONDES LERARIO

(Fonte: Lattes)
Índice h a partir de 2011
25
Projetos de Pesquisa
Unidades Organizacionais
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • bookPart
    Biologia molecular dos tumores endócrinos
    (2013) LERARIO, Antonio Marcondes; FRAGOSO, Maria Candida Barisson; BRITO, Luciana Pinto; MARTIN, Regina Matsunaga; TRARBACH, Erika Barbosa; MARUI, Suemi; TOLEDO, Rodrigo de Almeida; DOMENICE, Sorahia; MENDONçA, Berenice Bilharinho de
  • article 29 Citação(ões) na Scopus
    POD-1 binding to the E-box sequence inhibits SF-1 and StAR expression in human adrenocortical tumor cells
    (2013) FRANCA, Monica Malheiros; FERRAZ-DE-SOUZA, Bruno; SANTOS, Mariza Gerdulo; LERARIO, Antonio Marcondes; FRAGOSO, Maria Candida Barisson Villares; LATRONICO, Ana Claudia; KUICK, Rork D.; HAMMER, Gary D.; LOTFI, Claudimara F. P.
    Pod-1/Tcf21 is expressed at epithelial-mesenchymal interaction sites during development of many organs. Different approaches have demonstrated that Pod-1 transcriptionally inhibits Sf-1/NR5A1 during gonadal development. Disruption of Sf-1 can lead to disorders of adrenal development, while increased dosage of SF-1 has been related to increased adrenal cell proliferation and tumorigenesis. In this study, we analyzed whether POD-1 overexpression inhibits the endogenous Sf-1 expression in human and mouse adrenocortical tumor cells. Cells were transiently transfected with luciferase reporter gene under the control of Sf-1 promoter and with an expression vector encoding Pod-1. Pod-1 construct inhibited the transcription of the Sf1/Luc reporter gene in a dose-dependent manner in mouse Y-1 adrenocortical carcinoma (ACC) cells, and inhibited endogenous SF-1 expression in the human H295R and ACC-T36 adrenocortical carcinoma cells. These results were validated by chromatin immunoprecipitation assay with POD-1-transfected H295R cells using primers specific to E-box sequence in SF-1 promoter region, indicating that POD-1 binds to the SF-1 E-box promoter. Moreover, POD-1 over-expression resulted in a decrease in expression of the SF-1 target gene, StAR (Steroidogenic Acute Regulatory Protein). Lastly, while the induced expression of POD-1 did not affect the cell viability of H295R/POD-1 or ACC-T36/POD-1 cells, the most significantly enriched KEGG pathways for genes negatively correlated to POD-1/TCF21 in 33 human ACCs were those associated with cell cycle genes.