BRYAN ERIC STRAUSS

(Fonte: Lattes)
Índice h a partir de 2011
17
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/24 - Laboratório de Oncologia Experimental, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 15
  • article 21 Citação(ões) na Scopus
    Combined p19Arf and interferon-beta gene transfer enhances cell death of B16 melanoma in vitro and in vivo
    (2013) MERKEL, C. A.; MEDRANO, R. F. V.; BARAUNA, V. G.; STRAUSS, B. E.
    Approximately 90% of melanomas retain wild-type p53, a characteristic that may help shape the development of novel treatment strategies. Here, we employed an adenoviral vector where transgene expression is,controlled by p53 to deliver the p19 alternate reading frame (An) and interferon-beta (IFN beta) complementary DNAs in the B16 mouse model of melanoma. In vitro, cell death was enhanced by combined gene transfer (63.82 +/- 15.30% sub-GO cells); yet introduction of a single gene resulted in significantly fewer hypoploid cells (37.73 +/- 7.3% or 36.96 +/- 11.58%, p19Arf or IFN beta, respectively, P < 0.05). Annexin V staining and caspase-3 cleavage indicate a cell death mechanism consistent with apoptosis. Using reverse transcriptase quantitative PCR, we show that key transcriptional targets of p53 were upregulated in the presence of p19Arf, although treatment with IFN beta did not alter expression of the genes studied. In situ gene therapy revealed significant inhibition of subcutaneous tumors by IFN beta (571 +/- 25 mm(3)) or the combination of p19Arf and IFN beta (489 +/- 124 mm(3)) as compared with the LacZ control (1875 +/- 33 mm(3), P < 0.001); whereas p19Arf yielded an intermediate result (1053 +/- 169 mm(3), P < 0.01 vs control). However, only the combination was associated with increased cell death and prolonged survival (P < 0.01). As shown here, the combined transfer of p19Arf and IFN beta using p53-responsive vectors enhanced cell death both in vitro and in vivo.
  • article 1 Citação(ões) na Scopus
    Distinct Roles of Direct Transduction Versus Exposure to the Tumor Secretome on Murine Endothelial Cells After Melanoma Gene Therapy with Interferon-beta and p19Arf
    (2019) VIEIRA, Igor de Luna; TAMURA, Rodrigo Esaki; HUNGER, Aline; STRAUSS, Bryan E.
    Tumor vasculature plays a central role in tumor progression, making it an attractive therapeutic target. In this study, we explore the antiangiogenic potential of our melanoma gene therapy approach combining interferon beta (IFN beta) and p19Arf gene transfer. Since these proteins are modulators of tumor vasculature, we explore the impact of IFN beta and p19Arf gene transfer on murine endothelial cells (tEnd). Adenovirus-mediated gene transfer of p19Arf to tEnd cells inhibited proliferation, tube formation, migration, and led to increased expression of genes related to the p53 cell death pathway, yet IFN beta gene transfer had no significant impact on tEnd viability. Alternatively, tEnd cells were exposed to the factors generated by transduced B16 (mouse melanoma) cells using either coculture or conditioned medium. In either case, transduction of B16 cells with the IFN beta vector, whether alone or in combination with p19Arf, resulted in endothelial cell death. Strikingly, treatment of tEnd cells with recombinant IFN beta did not induce death, demonstrating that additional factors produced by B16 cells contributed to the demise of tEnd cells. In this work, we have shown that our melanoma gene therapy strategy produces desirable negative effects on endothelial cells, possibly correlating with antiangiogenic activity.
  • article 8 Citação(ões) na Scopus
    AAVPG: A vigilant vector where transgene expression is induced by p53
    (2013) BAJGELMAN, Marcio C.; MEDRANO, Ruan F. V.; CARVALHO, Anna Carolina P. V.; STRAUSS, Bryan E.
    Using p53 to drive transgene expression from viral vectors may provide on demand expression in response to physiologic stress, such as hypoxia or DNA damage. Here we introduce AAVPG, an adeno-associated viral (AAV) vector where a p53-responsive promoter, termed PG, is used to control transgene expression. In vitro assays show that expression from the AAVPG-luc vector was induced specifically in the presence of functional p53 (1038 +/- 202 fold increase, p < 0.001). The AAVPG-Iuc vector was an effective biosensor of p53 activation in response to hypoxia (4.48 +/- 0.6 fold increase in the presence of 250 mu M CoCl2, p < 0.001) and biomechanical stress (253 +/- 0.4 fold increase with stretching, p < 0.05). In vivo, the vigilant nature of the AAVPG-luc vector was revealed after treatment of tumor-bearing mice with doxorubicin (pretreatment, 3.4 x 10(5) +/- 0.43 x 10(5) photons/s; post-treatment, 6.6 x 10(5) +/- 2.1 x 10(5) photons/s, p < 0.05). These results indicate that the AAVPG vector is an interesting option for detecting p53 activity both in vitro and in vivo.
  • article 10 Citação(ões) na Scopus
    Improving adenoviral vectors and strategies for prostate cancer gene therapy
    (2018) TAMURA, Rodrigo Esaki; LUNA, Igor Vieira de; LANA, Marlous Gomes; STRAUSS, Bryan E.
    Gene therapy has been evaluated for the treatment of prostate cancer and includes the application of adenoviral vectors encoding a suicide gene or oncolytic adenoviruses that may be armed with a functional transgene. In parallel, versions of adenoviral vector expressing the p53 gene (Ad-p53) have been tested as treatments for head and neck squamous cell carcinoma and non-small cell lung cancer. Although Ad-p53 gene therapy has yielded some interesting results when applied to prostate cancer, it has not been widely explored, perhaps due to current limitations of the approach. To achieve better functionality, improvements in the gene transfer system and the therapeutic regimen may be required. We have developed adenoviral vectors whose transgene expression is controlled by a p53-responsive promoter, which creates a positive feedback mechanism when used to drive the expression of p53. Together with improvements that permit efficient transduction, this new approach was more effective than the use of traditional versions of Ad-p53 in killing prostate cancer cell lines and inhibiting tumor progression. Even so, gene therapy is not expected to replace traditional chemotherapy but should complement the standard of care. In fact, chemotherapy has been shown to assist in viral transduction and transgene expression. The cooperation between gene therapy and chemotherapy is expected to effectively kill tumor cells while permitting the use of reduced chemotherapy drug concentrations and, thus, lowering side effects. Therefore, the combination of gene therapy and chemotherapy may prove essential for the success of both approaches.
  • article 19 Citação(ões) na Scopus
    Intratumoral Immunization by p19Arf and Interferon-beta Gene Transfer in a Heterotopic Mouse Model of Lung Carcinoma
    (2016) CATANI, Joao Paulo Portela; MEDRANO, Ruan F. V.; HUNGER, Aline; VALLE, Paulo Del; ADJEMIAN, Sandy; ZANATTA, Daniela Bertolini; KROEMER, Guido; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Therapeutic strategies that act by eliciting and enhancing antitumor immunity have been clinically validated as an effective treatment modality but may benefit from the induction of both cell death and immune activation as primary stimuli. Using our AdRGD-PG adenovector platform, we show here for the first time that in situ gene transfer of p19Arf and interferon-beta (IFN beta) in the LLC1 mouse model of lung carcinoma acts as an immunotherapy. Although p19Arf is sufficient to induce cell death, only its pairing with IFN beta significantly inducedmarkers of immunogenic cell death. In situ gene therapy with IFN beta, either alone or in combination with p19Arf, could retard tumor progression, but only the combined treatment was associated with a protective immune response. Specifically in the case of combined intratumoral gene transfer, we identified 167 differentially expressed genes when usingmicroarray to evaluate tumors that were treated in vivo and confirmed the activation of CCL3, CXCL3, IL1 alpha, IL1 beta, CD274, and OSM, involved in immune response and chemotaxis. Histologic evaluation revealed significant tumor infiltration by neutrophils, whereas functional depletion of granulocytes ablated the antitumor effect of our approach. The association of in situ gene therapy with cisplatin resulted in synergistic elimination of tumor progression. In all, in situ gene transfer with p19Arf and IFN beta acts as an immunotherapy involving recruitment of neutrophils, a desirable but previously untested outcome, and this approach may be allied with chemotherapy, thus providing significant antitumor activity and warranting further development for the treatment of lung carcinoma.
  • article 19 Citação(ões) na Scopus
    Vaccination using melanoma cells treated with p19arf and interferon beta gene transfer in a mouse model: a novel combination for cancer immunotherapy
    (2016) MEDRANO, Ruan Felipe Vieira; CATANI, Joao Paulo Portela; RIBEIRO, Aline Hunger; TOMAZ, Samanta Lopes; MERKEL, Christian A.; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Previously, we combined p19(Arf) (Cdkn2a, tumor suppressor protein) and interferon beta (IFN-beta, immunomodulatory cytokine) gene transfer in order to enhance cell death in a murine model of melanoma. Here, we present evidence of the immune response induced when B16 cells succumbing to death due to treatment with p19(Arf) and IFN-beta are applied in vaccine models. Use of dying cells for prophylactic vaccination was investigated, identifying conditions for tumor-free survival. After combined p19(Arf) and IFN-beta treatment, we observed immune rejection at the vaccine site in immune competent and nude mice with normal NK activity, but not in NOD-SCID and dexamethasone immunosuppressed mice (NK deficient). Combined treatment induced IL-15, ULBP1, FAS/APO1 and KILLER/DR5 expression, providing a mechanism for NK activation. Prophylactic vaccination protected against tumor challenge, where markedly delayed progression and leukocyte infiltration were observed. Analysis of primed lymphocytes revealed secretion of TH1-related cytokines and depletion protocols showed that both CD4(+) and CD8(+) T lymphocytes are necessary for immune protection. However, application of this prophylactic vaccine where cells were treated either with IFN-beta alone or combined with p19(Arf) conferred similar immune protection and cytokine activation, yet only the combination was associated with increased overall survival. In a therapeutic vaccine protocol, only the combination was associated with reduced tumor progression. Our results indicate that by harnessing cell death in an immunogenic context, our p19(Arf) and IFN-beta combination offers a clear advantage when both genes are included in the vaccine and warrants further development as a novel immunotherapy for melanoma.
  • article 8 Citação(ões) na Scopus
  • article 17 Citação(ões) na Scopus
    Induction of Oxidants Distinguishes Susceptibility of Prostate Carcinoma Cell Lines to p53 Gene Transfer Mediated by an Improved Adenoviral Vector
    (2017) TAMURA, Rodrigo Esaki; HUNGER, Aline; FERNANDES, Denise C.; LAURINDO, Francisco R.; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Previously, the authors developed an adenoviral vector, Ad-PG, where transgene expression is regulated by a p53-responsive promoter. When used to transfer the p53 cDNA, a positive feedback mechanism is established. In the present study, a critical comparison is performed between Ad-PGp53 and AdRGD-PGp53, where the RGD motif was incorporated in the adenoviral fiber protein. AdRGD-PGp53 provided superior transgene expression levels and resulted in the killing of prostate carcinoma cell lines DU145 and PC3. In vitro, this effect was associated with increased production of cytoplasmic and mitochondrial oxidants, DNA damage as revealed by detection of phosphorylated H2AX, as well as cell death consistent with apoptosis. Differential gene expression of key mediators of reactive oxygen species pathways was also observed. Specifically, it was noted that induction of known p53-target genes Sestrin2 and PIG3, as well as a novel target, NOX1, occurred in PC3 cells only when transduced with the improved vector, AdRGD-PGp53. The participation of NOX1 was confirmed upon its inhibition using a specific peptide, resulting in reduced cell death. In situ gene therapy also resulted in significantly improved inhibition of tumor progression consistent with oxidant-induced DNA damage only when treated with the novel AdRGD-PGp53 vector. The study shows that the improved adenovirus overcomes limitations associated with other p53-expressing vectors and induces oxidant-mediating killing, thus supporting its further development for cancer gene therapy.
  • article 14 Citação(ões) na Scopus
    Autoregulated expression of p53 from an adenoviral vector confers superior tumor inhibition in a model of prostate carcinoma gene therapy
    (2016) TAMURA, Rodrigo Esaki; SOARES, Rafael Bento da Silva; COSTANZI-STRAUSS, Eugenia; STRAUSS, Bryan E.
    Alternative treatments for cancer using gene therapy approaches have shown promising results and some have even reached the marketplace. Even so, additional improvements are needed, such as employing a strategically chosen promoter to drive expression of the transgene in the target cell. Previously, we described viral vectors where high-level transgene expression was achieved using a p53-responsive promoter. Here we present an adenoviral vector (AdPGp53) where p53 is employed to regulate its own expression and which outperforms a traditional vector when tested in a model of gene therapy for prostate cancer. The functionality of AdPGp53 and AdCMVp53 were compared in human prostate carcinoma cell lines. AdPGp53 conferred greatly enhanced levels of p53 protein and induction of the p53 target gene, p21, as well as superior cell killing by a mechanism consistent with apoptosis. DU145 cells were susceptible to induction of death with AdPGp53, yet PC3 cells were quite resistant. Though AdCMVp53 was shown to be reliable, extremely high-level expression of p53 offered by AdPGp53 was necessary for tumor suppressor activity in PC3 and DU145. In situ gene therapy experiments revealed tumor inhibition and increased overall survival in response to AdPGp53, but not AdCMVp53. Upon histologic examination, only AdPGp53 treatment was correlated with the detection of both p53 and TUNEL-positive cells. This study points to the importance of improved vector performance for gene therapy of prostate cancer.
  • article 8 Citação(ões) na Scopus
    Uncovering the immunotherapeutic cycle initiated by p19Arf and interferon-beta gene transfer to cancer cells: An inducer of immunogenic cell death
    (2017) MEDRANO, Ruan F. V.; HUNGER, Aline; CATANI, Joao P. P.; STRAUSS, Bryan E.
    Simultaneous reestablishment of p53/p19(Arf) and interferon-beta pathways in melanoma cells culminates in a cell death process that displays features of necroptosis along with the release of immunogenic cell death molecules and unleashes an antitumor immune response mediated by natural killer cells, neutrophils as well as CD4(+) and CD8(+) T lymphocytes.