VANESSA JACOB VICTORINO

(Fonte: Lattes)
Índice h a partir de 2011
11
Projetos de Pesquisa
Unidades Organizacionais
LIM/51 - Laboratório de Emergências Clínicas, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 4 de 4
  • article 11 Citação(ões) na Scopus
    Clinical insights from adiponectin analysis in breast cancer patients reveal its anti-inflammatory properties in non-obese women
    (2014) PANIS, C.; HERRERA, A. C. S. A.; ARANOME, A. M. F.; VICTORINO, V. J.; MICHELLETI, P. L.; MORIMOTO, H. K.; CECCHINI, A. L.; SIMAO, A. N. C.; CECCHINI, R.
    Adiponectin is a cytokine reported as a determinant of poor prognosis in women with breast cancer. However, because data regarding its role in breast cancer have been obtained primarily from studies employing overweight or obese women, the adiponectin profile in non-obese women is poorly understood. In this study, we determined adiponectin levels in plasma from non-obese women with breast cancer and investigated a possible correlation with systemic inflammatory status. We determined the plasma adiponectin levels as well as biochemical and oxidative stress parameters in 80 women. Our results revealed that plasma adiponectin levels were affected by chemotherapy, estrogen receptor status, and disease progression. Adiponectin was positively correlated with antioxidant levels, without affecting either the metastatic behavior of disease or patient outcome. These findings highlight adiponectin as a novel player in the endocrine signaling that modulates the oxidative inflammatory response in human breast cancer, and contribute to the understanding of the role of adiponectin in pathological conditions in non-obese women.
  • article 20 Citação(ões) na Scopus
    Trastuzumab-based chemotherapy modulates systemic redox homeostasis in women with HER2-positive breast cancer
    (2015) LEMOS, L. G. T.; VICTORINO, V. J.; HERRERA, A. C. S. A.; ARANOME, A. M. F.; CECCHINI, A. L.; SIMAO, A. N. C.; PANIS, C.; CECCHINI, R.
    Trastuzumab is an immunotargeting therapeutic against breast tumors with amplification of the human epithelial growth factor receptor 2 (HER2). HER2 patients naturally exhibit disruption in the pro-oxidant inflammatory profiling; however, the impact of trastuzumab-based chemotherapy in modulating this process is still unknown. Here we determined the systemic pro-inflammatory profile of women diagnosed with HER2-amplified tumors, undergoing trastuzumab-based chemotherapy (TZ), and compared the results with that of healthy controls (CTR) and untreated patients with HER2-amplified breast cancer (CA). The plasmatic inflammatory profile was assessed by evaluating pro-oxidant parameters such as lipid peroxidation, total antioxidant capacity (TRAP), levels of advanced oxidation protein products (AOPPs), nitric oxide (NO), C-reactive protein (CRP), and total thiol content. Markers of cardiac damage were also assessed. Our findings showed increased NO levels in TZ than that in either CA or CTR groups. Furthermore, TZ augmented TRAP and reduced total thiol than that of the CA group. Our data also revealed that AOPP levels were significantly higher in the TZ than the CA group. AOPP and the MB fraction of creatine-kinase (CKMB) levels were positively correlated in TZ patients. These findings suggest that trastuzumab-associated chemotherapy can modulate the pro-inflammatory markers of HER2-positive breast cancer patients to the levels found in healthy controls.
  • article 11 Citação(ões) na Scopus
    PGC-1 beta regulates HER2-overexpressing breast cancer cells proliferation by metabolic and redox pathways
    (2016) VICTORINO, Vanessa Jacob; BARROSO, W. A.; ASSUNCAO, A. K. M.; CURY, V.; JEREMIAS, I. C.; PETRONI, R.; CHAUSSE, B.; ARIGA, S. K.; HERRERA, A. C. S. A.; PANIS, C.; LIMA, T. M.; SOUZA, H. P.
    Breast cancer is a prevalent neoplastic disease among women worldwide which treatments still present several side effects and resistance. Considering that cancer cells present derangements in their energetic homeostasis, and that peroxisome proliferator-activated receptor- gamma coactivator 1 (PGC-1) is crucial for cellular metabolism and redox signaling, the main objective of this study was to investigate whether there is a relationship between PGC-1 expression, the proliferation of breast cancer cells and the mechanisms involved. We initially assessed PGC-1 beta expression in complementary DNA (cDNA) from breast tumor of patients bearing luminal A, luminal B, and HER2-overexpressed and triple negative tumors. Our data showed that PGC-1 beta expression is increased in patients bearing HER2-overexpressing tumors as compared to others subtypes. Using quantitative PCR and immunoblotting, we showed that breast cancer cells with HER2-amplification (SKBR-3) have greater expression of PGC-1 beta as compared to a non-tumorous breast cell (MCF-10A) and higher proliferation rate. PGC-1 beta expression was knocked down with short interfering RNA in HER2-overexpressing cells, and cells decreased proliferation. In these PGC-1 beta-inhibited cells, we found increased citrate synthase activity and no marked changes in mitochondrial respiration. Glycolytic pathway was decreased, characterized by lower intracellular lactate levels. In addition, after PGC-1 beta knockdown, SKBR-3 cells showed increased reactive oxygen species production, no changes in antioxidant activity, and decreased expression of ERR alpha, a modulator of metabolism. In conclusion, we show an association of HER2overexpression and PGC-1 beta. PGC-1 beta knockdown impairs HER2-overexpressing cells proliferation acting on ERR alpha signaling, metabolism, and redox balance.
  • article 12 Citação(ões) na Scopus
    Can Breast Tumors Affect the Oxidative Status of the Surrounding Environment? A Comparative Analysis among Cancerous Breast, Mammary Adjacent Tissue, and Plasma
    (2016) PANIS, C.; VICTORINO, V. J.; HERRERA, A. C. S. A.; CECCHINI, A. L.; SIMAO, A. N. C.; TOMITA, L. Y.; CECCHINI, R.
    In this paper, we investigated the oxidative profile of breast tumors in comparison with their normal adjacent breast tissue. Our study indicates that breast tumors present enhanced oxidative/nitrosative stress, with concomitant augmented antioxidant capacity when compared to the adjacent normal breast. These data indicate that breast cancers may be responsible for the induction of a prooxidant environment in the mammary gland, in association with enhanced TNF-alpha and nitric oxide.