GEORGE BARBERIO COURA FILHO

(Fonte: Lattes)
Índice h a partir de 2011
11
Projetos de Pesquisa
Unidades Organizacionais
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/43 - Laboratório de Medicina Nuclear, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 3 de 3
  • article 1 Citação(ões) na Scopus
    Comparison of standardized uptake values measured on 18F-NaF PET/CT scans using three different tube current intensities
    (2015) VALADARES, Agnes Araujo; DUARTE, Paulo Schiavom; WOELLNER, Eduardo Bechtloff; COURA-FILHO, George Barberio; SAPIENZA, Marcelo Tatit; BUCHPIGUEL, Carlos Alberto
    Objective: To analyze standardized uptake values (SUVs) using three different tube current intensities for attenuation correction on 18FNaF PET/CT scans. Materials and Methods: A total of 254 18F-NaF PET/CT studies were analyzed using 10, 20 and 30 mAs. The SUVs were calculated in volumes of interest (VOIs) drawn on three skeletal regions, namely, right proximal humeral diaphysis (RH), right proximal femoral diaphysis (RF), and first lumbar vertebra (LV1) in a total of 712 VOIs. The analyses covered 675 regions classified as normal (236 RH, 232 RF, and 207 LV1). Results: Mean SUV for each skeletal region was 3.8, 5.4 and 14.4 for RH, RF, and LV1, respectively. As the studies were grouped according to mAs value, the mean SUV values were 3.8, 3.9 and 3.7 for 10, 20 and 30 mAs, respectively, in the RH region; 5.4, 5.5 and 5.4 for 10, 20 and 30 mAs, respectively, in the RF region; 13.8, 14.9 and 14.5 for 10, 20 and 30 mAs, respectively, in the LV1 region. Conclusion: The three tube current values yielded similar results for SUV calculation.
  • article 2 Citação(ões) na Scopus
    Radiation safety measures in diagnostic nuclear medicine, based on the potential radiation dose emitted by radioactive patients
    (2023) WILLEGAIGNON, José; FERNANDES, Samantha Cristina Pereira; PELISSONI, Rogério Alexandre; COURA-FILHO, George Barbério; SAPIENZA, Marcelo Tatit; BUCHPIGUEL, Carlos Alberto
    Abstract Objective: To measure the potential radiation dose emitted by patients who have recently undergone diagnostic nuclear medicine procedures, in order to establish optimal radiation safety measures for such procedures. Materials and Methods: We evaluated the radiation doses emitted by 175 adult patients in whom technetium-99m, iodine-131, and fluorine-18 radionuclides were administered for bone, kidney, heart, brain, and whole-body scans, as measured with a radiation detector. Those values served as the basis for evaluating whole-body radiopharmaceutical clearance, as well as the risk for the exposure of others to radiation, depending on the time elapsed since administration of the radiopharmaceutical. Results: The mean time to clearance of the radiopharmaceuticals administered, expressed as the effective half-life, ranged from 1.18 ± 0.30 h to 11.41 ± 0.02 h, and the mean maximum cumulative radiation dose at 1.0 m from the patients was 149.74 ± 56.72 µSv. Even at a distance of 0.5 m, the cumulative dose was found to be only half and one tenth of the limits established for exposure of the general public and family members/caregivers (1.0 mSv and 5.0 mSv per episode, respectively). Conclusion: Cumulative radiation doses emitted by patients immediately after diagnostic nuclear medicine procedures are considerably lower than the limits established by the International Commission on Radiological Protection and the International Atomic Energy Agency, and precautionary measures to avoid radiation exposure are therefore not required after such procedures.
  • article 2 Citação(ões) na Scopus
    Dose calibrator linearity test: 99mTc versus 18F radioisotopes
    (2015) WILLEGAIGNON, José; SAPIENZA, Marcelo Tatit; COURA-FILHO, George Barberio; GARCEZ, Alexandre Teles; ALVES, Carlos Eduardo Gonzalez Ribeiro; CARDONA, Marissa Anabel Rivera; GUTTERRES, Ricardo Fraga; BUCHPIGUEL, Carlos Alberto
    Objective: The present study was aimed at evaluating the viability of replacing 18F with 99mTc in dose calibrator linearity testing. Materials and Methods: The test was performed with sources of 99mTc (62 GBq) and 18F (12 GBq) whose activities were measured up to values lower than 1 MBq. Ratios and deviations between experimental and theoretical 99mTc and 18F sources activities were calculated and subsequently compared. Results: Mean deviations between experimental and theoretical 99mTc and 18F sources activities were 0.56 (± 1.79)% and 0.92 (± 1.19)%, respectively. The mean ratio between activities indicated by the device for the 99mTc source as measured with the equipment pre-calibrated to measure 99mTc and 18F was 3.42 (± 0.06), and for the 18F source this ratio was 3.39 (± 0.05), values considered constant over the measurement time. Conclusion: The results of the linearity test using 99mTc were compatible with those obtained with the 18F source, indicating the viability of utilizing both radioisotopes in dose calibrator linearity testing. Such information in association with the high potential of radiation exposure and costs involved in 18F acquisition suggest 99mTc as the element of choice to perform dose calibrator linearity tests in centers that use 18F, without any detriment to the procedure as well as to the quality of the nuclear medicine service.