THAIS VIRGINIA MOURA MACHADO COSTA

(Fonte: Lattes)
Índice h a partir de 2011
6
Projetos de Pesquisa
Unidades Organizacionais
LIM/03 - Laboratório de Medicina Laboratorial, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 6 Citação(ões) na Scopus
    Gene expression profile suggesting immunological dysregulation in two Brazilian Bloom's syndrome cases
    (2020) MONTENEGRO, Marilia M.; QUAIO, Caio R.; PALMEIRA, Patricia; GASPARINI, Yanca; RANGEL-SANTOS, Andreia; DAMASCENO, Julian; NOVAK, Estela M.; GIMENEZ, Thamires M.; YAMAMOTO, Guilherme L.; RONJO, Rachel S.; NOVO-FILHO, Gil M.; CHEHIMI, Samar N.; ZANARDO, Evelin A.; DIAS, Alexandre T.; NASCIMENTO, Amom M.; COSTA, Thais V. M. M.; DUARTE, Alberto J. da S.; COUTINHO, Luiz L.; KIM, Chong A.; KULIKOWSKI, Leslie D.
    Background Bloom syndrome (BS) is a rare autosomal recessive chromosome instability disorder. The main clinical manifestations are growth deficiency, telangiectasic facial erythema, immunodeficiency, and increased risk to develop neoplasias at early age. Cytogenetic test for sister chromatid exchanges (SCEs) is used as a diagnostic marker for BS. In addition, most patients also present mutations in the & x202f;BLM & x202f;gene, related to defects in the DNA repair mechanism. However, the molecular mechanism behind the pathogenicity of BS is & x202f;still & x202f;not completely understood. Methods We describe two patients confirmed with BS by SCE and molecular analysis. Also, we performed the gene expression profile by the RNA-seq methodology in mRNA transcripts for differential gene expression analysis using as a biological condition for comparison BS versus health controls. Results We detected 216 differentially expressed genes related to immunological pathways such as positive regulation and activation of B cells, immune effector process and absence of difference of DNA repair genes expression. In addition; we also observed differentially expressed genes associated with apoptosis control, such as BCL2L1, CASP7, CDKN1A, E2F2, ITPR, CD274, TNFAIP6, TNFRSF25, TNFRSF13C, and TNFRSF17. Conclusion Our results suggest that the combination of altered expression of genes involved in signaling pathways of immune response and apoptosis control may contribute directly to the main characteristics observed in BS, such as recurrent infections, growth failure, and high risk of cancer. Transcriptome studies of other instability syndromes could allow a more accurate analysis of the relevant gene interactions associated with the destabilization of the genome. This is a first description of the profile of differential gene expression related to immunological aspects detected in patients with BS by RNA-seq.
  • article 4 Citação(ões) na Scopus
    Breakpoint delineation in 5p- patients leads to new insights about microcephaly and the typical high-pitched cry
    (2020) CHEHIMI, Samar N.; ZANARDO, Evelin A.; CERONI, Jose R. M.; NASCIMENTO, Amom M.; MADIA, Fabricia A. R.; DIAS, Alexandre T.; FILHO, Gil M. N.; MONTENEGRO, Marlia M.; DAMASCENO, Jullian; COSTA, Thas V. M. M.; GASPARINI, Yanca; KIM, Chong A.; KULIKOWSKI, Leslie D.
    Background Cri du chat syndrome (CdCS) is a rare syndrome caused by a partial or complete deletion of the short arm of chromosome 5 (5p-). The main clinical features include a high-pitched cry, facial asymmetry, microcephaly, round face at birth, epicanthal folds, hypotonia, delayed growth and development. Methods We studied 14 Brazilian patients with CdCS using genomic array in order to better define the 5p breakpoints and recognize copy number variations (CNVs) that contribute to clinical manifestations associated with the syndrome. Results Array confirmed terminal deletions in 13 patients and an interstitial deletion in one patient. It was also possible to map the breakpoints and associate a genomic region of 4.7 Mb to the development of head circumference and cat-like cry. We also found other CNVs concomitant to the 5p deletion including a 9p duplication, a 17q deletion, and a 22q deletion in three different patients. Conclusion With advancements of molecular cytogenomic methods in the last two decades, it was possible to evidence cryptic alterations and improve the genotype-phenotype correlation. In this work, we describe a new genomic region associated with microcephaly and cat-like cry and highlight the importance of precise delineation of 5p deletion breakpoints and detection of other CNVs in CdCS patients to improve genotype-phenotype correlation to perform a complete clinical and molecular diagnosis.