HIRO GOTO

(Fonte: Lattes)
Índice h a partir de 2011
14
Projetos de Pesquisa
Unidades Organizacionais
Departamento de Medicina Preventiva, Faculdade de Medicina - Docente
LIM/38 - Laboratório de Epidemiologia e Imunobiologia, Hospital das Clínicas, Faculdade de Medicina - Líder

Resultados de Busca

Agora exibindo 1 - 10 de 21
  • article 5 Citação(ões) na Scopus
    Dual Host-Intracellular Parasite Transcriptome of Enucleated Cells Hosting Leishmania amazonensis: Control of Half-Life o Host Cell Transcripts by the Parasite
    (2020) ORIKAZA, Cristina M.; PESSOA, Carina C.; V, Fernanda Paladino; V, Pilar T. Florentino; BARBIERI, Clara L.; GOTO, Hiro; RAMOS-SANCHEZ, Eduardo Milton; SILVEIRA, Jose Franco; RABINOVITCH, Michel; MORTARA, Renato A.; REAL, Fernando
    Enucleated cells or cytoplasts (cells whose nucleus is removed in vitro) represent an unexplored biological model for intracellular infection studies due to the abrupt interruption of nuclear processing and new RNA synthesis by the host cell in response to pathogen entry. Using enucleated fibroblasts hosting the protozoan parasite Leishmania amazonensis, we demonstrate that parasite multiplication and biogenesis of large parasitophorous vacuoles in which parasites multiply are independent of the host cell nucleus. Dual RNA sequencing of both host cytoplast and intracellular parasite transcripts identified host transcripts that are more preserved or degraded upon interaction with parasites and also parasite genes that are differentially expressed when hosted by nucleated or enucleated cells. Cytoplasts are suitable host cells, which persist in culture for more than 72 h and display functional enrichment of transcripts related to mitochondrial functions and mRNA translation. Crosstalk between nucleated host de novo gene expression in response to intracellular parasitism and the parasite gene expression to counteract or benefit from these host responses induces a parasite transcriptional profile favoring parasite multiplication and aerobic respiration, and a host-parasite transcriptional landscape enriched in host cell metabolic functions related to NAD, fatty acid, and glycolytic metabolism. Conversely, interruption of host nucleus-parasite cross talk by infection of enucleated cells generates a host-parasite transcriptional landscape in which cytoplast transcripts are enriched in phagolysosome-related pathway, prosurvival, and SerpinB-mediated immunomodulation. In addition, predictive in since analyses indicated that parasite transcript products secreted within cytoplasts interact with host transcript products conserving the host V-ATPase proton translocation function and glutamine/proline metabolism. The collective evidence indicates parasite-mediated control of host cell transcripts half-life that is beneficial to parasite intracellular multiplication and escape from host immune responses. These findings will contribute to improved drug targeting and serve as database for L. arnazonensis-host cell interactions.
  • article 13 Citação(ões) na Scopus
    The interactions and essential effects of intrinsic insulin-like growth factor-I on Leishmania (Leishmania) major growth within macrophages
    (2013) REIS, L. C.; RAMOS-SANCHEZ, E. M.; GOTO, H.
    Previously, we showed in Leishmania infections that extrinsic insulin-like growth factor (IGF)-I favored Leishmania proliferation and leishmaniasis development. In this study, the interaction of intrinsically expressed IGF-I and Leishmania (Leishmania) major in macrophages was addressed, and a key finding was the observation, using confocal microscopy, of the co-localization of IGF-I and parasites within macrophages. Following stimulation with interferon-gamma (IFN-gamma), which is known to inhibit IGF-I production in macrophages, we observed a reduction in the expression of both IGF-I mRNA and protein. This reduced expression was accompanied by a reduction in the cellular parasite load that was completely recovered with the addition of extrinsic IGF-I, which suggests an essential role for IGF-I in Leishmania growth.
  • article 10 Citação(ões) na Scopus
    Macrophages From Subjects With Isolated GH/IGF-I Deficiency Due to a GHRH Receptor Gene Mutation Are Less Prone to Infection by Leishmania amazonensis
    (2019) BARRIOS, Monica R.; CAMPOS, Viviane C.; PERES, Nalu T. A.; OLIVEIRA, Lais L. de; CAZZANIGA, Rodrigo A.; SANTOS, Marcio B.; AIRES, Murilo B.; SILVA, Ricardo L. L.; BARRETO, Aline; GOTO, Hiro; ALMEIDA, Roque P.; SALVATORI, Roberto; AGUIAR-OLIVEIRA, Manuel H.; JESUS, Amelia M. R.
    Isolated growth hormone (GH) deficiency (IGHD) affects approximately 1 in 4,000 to 1 in 10,000 individuals worldwide. We have previously described a large cohort of subjects with IGHD due to a homozygous mutation in the GH releasing hormone (GHRH) receptor gene. These subjects exhibit throughout the life very low levels of GH and its principal mediator, the Insulin Growth Factor-I (IGF-I). The facilitating role of IGF-I in the infection of mouse macrophages by different Leishmania strains is well-known. Nevertheless, the role of IGF-I in Leishmania infection of human macrophages has not been studied. This study aimed to evaluate the behavior of Leishmania infection in vitro in macrophages from untreated IGHD subjects. To this end, blood samples were collected from 14 IGHD individuals and 14 age and sex-matched healthy controls. Monocytes were isolated and derived into macrophages and infected with a strain of Leishmania amazonensis. In addition, IGF-I was added to culture medium to evaluate its effect on the infection. Cytokines were measured in the culture supernatants. We found that macrophages from IGHD subjects were less prone to Leishmania infection compared to GH sufficient controls. Both inflammatory and anti-inflammatory cytokines increase only in the supernatants of the control macrophages. Addition of IGF-I to the culture medium increased infection rates. In conclusion, we demonstrated that IGF-I is crucial for Leishmania infection of human macrophages.
  • article 16 Citação(ões) na Scopus
    CD4(+) T Cells Alter the Stromal Microenvironment and Repress Medullary Erythropoiesis in Murine Visceral Leishmaniasis
    (2018) PREHAM, Olivier; PINHO, Flaviane A.; PINTO, Ana Isabel; RANI, Gulab Fatima; BROWN, Najmeeyah; HITCHCOCK, Ian S.; GOTO, Hiro; KAYE, Paul M.
    Human visceral leishmaniasis, a parasitic disease of major public health importance in developing countries, is characterized by variable degrees of severity of anemia, but the mechanisms underlying this change in peripheral blood have not been thoroughly explored. Here, we used an experimental model of visceral leishmaniasis in C57BL/6 mice to explore the basis of anemia following infection with Leishmania donovani. 28 days post-infection, mice showed bone marrow dyserythropoiesis by myelogram, with a reduction of TER119(+) CD71(-/+) erythroblasts. Reduction of medullary erythropoiesis coincided with loss of CD169(high) bone marrow stromal macrophages and a reduction of CXCL12-expressing stromal cells. Although the spleen is a site of extramedullary erythropoiesis and erythrophagocytosis, splenectomy did not impact the extent of anemia or affect the repression of medullary hematopoiesis that was observed in infected mice. In contrast, these changes in bone marrow erythropoiesis were not evident in B6.Rag2(-/-) mice, but could be fully reconstituted by adoptive transfer of IFN gamma-producing but not IFN gamma-deficient CD4(+) T cells, mimicking the expansion of IFN gamma-producing CD4(+) T cells that occurs during infection in wild type mice. Collectively, these data indicate that anemia during experimental murine visceral leishmaniasis can be driven by defects associated with the bone marrow erythropoietic niche, and that this represents a further example of CD4(+) T cell-mediated immunopathology affecting hematopoietic competence.
  • article 3 Citação(ões) na Scopus
    Staphylococcus aureus Protection-Related Type 3 Cell-Mediated Immune Response Elicited by Recombinant Proteins and GM-CSF DNA Vaccine
    (2021) SANTOS, Kamila R.; SOUZA, Fernando N.; RAMOS-SANCHEZ, Eduardo M.; BATISTA, Camila F.; REIS, Luiza C.; FOTORAN, Wesley F.; HEINEMANN, Marcos B.; GOTO, Hiro; GIDLUND, Magnus; CUNHA, Adriano F.; FARIA, Angelica Rosa; ANDRADE, Helida M.; LAGE, Andrey P.; CERQUEIRA, Monica M. O. P.; LIBERA, Alice M. M. P. Della
    Staphylococcus aureus mastitis remains a major challenge for dairy farming. Here, 24 mice were immunized and divided into four groups: G1: control; G2: Granulocyte Macrophage Colony-Stimulating Factor (GM-CSF) DNA vaccine; G3: F0F1 ATP synthase subunit alpha (SAS), succinyldiaminopimelate (SDD), and cysteinyl-tRNA synthetase (CTS) recombinant proteins; and G4: SAS+SDD+CTS plus GM-CSF DNA vaccine. The lymphocyte subpopulations, and the intracellular interleukin-17A (IL-17A) and interferon-gamma production in the draining lymph node cells were immunophenotyped by flow cytometry. The immunophenotyping and lymphocyte proliferation was determined in spleen cells cultured with and without S. aureus stimulus. Immunization with S. aureus recombinant proteins generated memory cells in draining lymph nodes. Immunization with the three recombinant proteins plus GM-CSF DNA led to an increase in the percentage of IL-17A(+) cells among overall CD44(+) (memory), T CD4(+), CD4(+) T CD44(+) CD27(-), gamma delta TCR, gamma delta TCR+ CD44(+) CD27(+), and TCRV gamma 4(+) cells. Vaccination with S. aureus recombinant proteins associated with GM-CSF DNA vaccine downregulated T(H)2 immunity. Immunization with the three recombinant proteins plus the GM-CSF DNA led to a proliferation of overall memory T, CD4(+), and CD4(+) TEM cells upon S. aureus stimulus. This approach fostered type 3 immunity, suggesting the development of a protective immune response against S. aureus.
  • article 2 Citação(ões) na Scopus
    Pleiotropic Effect of Hormone Insulin-Like Growth Factor-I in Immune Response and Pathogenesis in Leishmaniases
    (2021) REIS, Luiza C.; RAMOS-SANCHEZ, Eduardo Milton; ARAUJO, Fernanda N.; LEAL, Ariane F.; OZAKI, Christiane Y.; SEVILLANO, Orlando R.; USCATA, Bernardina A.; GOTO, Hiro
    Leishmaniases are diseases caused by several Leishmania species, and many factors contribute to the development of the infection. Because the adaptive immune response does not fully explain the outcome of Leishmania infection and considering that the initial events are crucial in the establishment of the infection, we investigated one of the growth factors, the insulin-like growth factor-I (IGF-I), found in circulation and produced by different cells including macrophages and present in the skin where the parasite is inoculated. Here, we review the role of IGF-I in leishmaniasis experimental models and human patients. IGF-I induces the growth of different Leishmania species in vitro and alters the disease outcome increasing the parasite load and lesion size, especially in L. major- and L. amazonensis-infected mouse leishmaniasis. IGF-I affects the parasite interacting with the IGF-I receptor present on Leishmania. During Leishmania-macrophage interaction, IGF-I acts on the arginine metabolic pathway, resulting in polyamine production both in macrophages and Leishmania. IGF-I and cytokines interact with reciprocal influences on their expression. IL-4 is a hallmark of susceptibility to L. major in murine leishmaniasis, but we observed that IGF-I operates astoundingly as an effector element of the IL-4. Approaching human leishmaniasis, patients with mucosal, disseminated, and visceral diseases presented surprisingly low IGF-I serum levels, suggesting diverse effects than parasite growth. We observed that low IGF-I levels might contribute to the inflammatory response persistence and delayed lesion healing in human cutaneous leishmaniasis and the anemia development in visceral leishmaniasis. We must highlight the complexity of infection revealed depending on the Leishmania species and the parasite's developmental stages. Because IGF-I exerts pleiotropic effects on the biology of interaction and disease pathogenesis, IGF-I turns up as an attractive tool to explore biological and pathogenic processes underlying infection development. IGF-I pleiotropic effects open further the possibility of approaching IGF-I as a therapeutical target.
  • article 136 Citação(ões) na Scopus
    A Global Comparative Evaluation of Commercial Immunochromatographic Rapid Diagnostic Tests for Visceral Leishmaniasis
    (2012) CUNNINGHAM, Jane; HASKER, Epco; DAS, Pradeep; SAFI, Sayda El; GOTO, Hiro; MONDAL, Dinesh; MBUCHI, Margaret; MUKHTAR, Maowia; RABELLO, Ana; RIJAL, Suman; SUNDAR, Shyam; WASUNNA, Monique; ADAMS, Emily; MENTEN, Joris; PEELING, Rosanna; BOELAERT, Marleen
    Background. Poor access to diagnosis stymies control of visceral leishmaniasis (VL). Antibody-detecting rapid diagnostic tests (RDTs) can be performed in peripheral health settings. However, there are many brands available and published reports of variable accuracy. Methods. Commercial VL RDTs containing bound rK39 or rKE16 antigen were evaluated using archived human sera from confirmed VL cases (n = 750) and endemic non-VL controls (n = 754) in the Indian subcontinent (ISC), Brazil, and East Africa to assess sensitivity and specificity with 95% confidence intervals. A subset of RDTs were also evaluated after 60 days' heat incubation (37 degrees C, 45 degrees C). Interlot and interobserver variability was assessed. Results. All test brands performed well against ISC panels (sensitivity range, 92.8%-100%; specificity range, 96%-100%); however, sensitivity was lower against Brazil and East African panels (61.5%-91% and 36.8%-87.2%, respectively). Specificity was consistently > 95% in Brazil and ranged between 90.8% and 98% in East Africa. Performance of some products was adversely affected by high temperatures. Agreement between lots and readers was good to excellent (kappa > 0.73-0.99). Conclusions. Diagnostic accuracy of VL RDTs varies between the major endemic regions. Many tests performed well and showed good heat stability in the ISC; however, reduced sensitivity against Brazilian and East African panels suggests that in these regions, used alone, several RDTs are inadequate for excluding a VL diagnosis. More research is needed to assess ease of use and to compare performance using whole blood instead of serum and in patients coinfected with human immunodeficiency virus.
  • article 3 Citação(ões) na Scopus
    Insulin-Like Growth Factor-I as an Effector Element of the Cytokine IL-4 in the Development of a Leishmania major Infection
    (2018) REIS, Luiza C.; RAMOS-SANCHEZ, Eduardo Milton; PETITTO-ASSIS, Fabricio; NERLAND, Audun H.; HERNANDEZ-VALLADARES, Maria; SELHEIM, Frode; FLOETER-WINTER, Lucile Maria; GOTO, Hiro
    Certain cytokines modulate the expression of insulin-like growth factor-(IGF-) I. Since IL-4 and IGF-I promote growth of the protozoan Leishmania major, we here addressed their interaction in downregulating the expression of Igf-I mRNA using small interfering RNA (siRNA) in Leishmania major-infected macrophages. Parasitism was decreased in the siRNA-treated cells compared with the nontreated cells, reversed by the addition of recombinant IGF-I (rIGF-I). In IL-4-stimulated macrophages, parasitism and the Igf-I mRNA amount were increased, and the effects were nullified upon siRNA transfection. IGF-I downregulation inhibited both parasite and macrophage arginase activation even in IL-4-stimulated cells. Searching for intracellular signaling components shared by IL-4 and IGF-I, upon siRNA transfection, phosphorylated p44, p38, and Akt proteins were decreased, affecting the phosphatidylinositol-3-kinase (PI3K)/Akt pathway. In L. major-infected C57BL6-resistant mice, the preincubation of the parasite with rIGF-I changed the infection profile to be similar to that of susceptible mice. We conclude that IGF-I constitutes an effector element of IL-4 involving the PI3K/Akt pathway during L. major infection.
  • conferenceObject
    Altered expression of microRNAs in infections with cutaneous and visceral strains of Leishmania
    (2019) GOTO, H.; SOUZA, M. A.; RAMOS-SANCHEZ, E. M.; MUXEL, S. M.; BRITO, M. E. F.; PEREIRA, V. R. A.; FLOETER-WINTER, L. M.
  • article 8 Citação(ões) na Scopus
    Insulin-Like Growth Factor-I Induces Arginase Activity in Leishmania amazonensis Amastigote-Infected Macrophages through a Cytokine-Independent Mechanism
    (2014) VENDRAME, Celia Maria Vieira; CARVALHO, Marcia Dias Teixeira; TEMPONE, Andre Gustavo; GOTO, Hiro
    Leishmania (Leishmania) amazonensis exhibits peculiarities in its interactions with hosts. Because amastigotes are the primary form associated with the progression of infection, we studied the effect of insulin-like growth factor (IGF)-I on interactions between L. (L.) amazonensis amastigotes and macrophages. Upon stimulation of infected macrophages with IGF-I, we observed decreased nitric oxide production but increased arginase expression and activity, which lead to increased parasitism. However, stimulation of amastigote-infected macrophages with IGF-I did not result in altered cytokine levels compared to unstimulated controls. Because IGF-I is present in tissue fluids and also within macrophages, we examined the possible effect of this factor on phosphatidylserine (PS) exposure on amastigotes, seen previously in tissue-derived amastigotes leading to increased parasitism. Stimulation with IGF-I induced PS exposure on amastigotes but not on promastigotes. Using a PS-liposome instead of amastigotes, we observed that the PS-liposome but not the control phosphatidylcholine-liposome led to increased arginase activity in macrophages, and this process was not blocked by anti-TGF-beta antibodies. Our results suggest that in L. (L.) amazonensis amastigote-infected macrophages, IGF-I induces arginase activity directly in amastigotes and in macrophages through the induction of PS exposure on amastigotes in the latter, which could lead to the alternative activation of macrophages through cytokine-independent mechanisms.