FLAVIA CASTRO RIBAS DE SOUZA

(Fonte: Lattes)
Índice h a partir de 2011
5
Projetos de Pesquisa
Unidades Organizacionais
LIM/20 - Laboratório de Terapêutica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 4 Citação(ões) na Scopus
    Antileukotriene Reverts the Early Effects of Inflammatory Response of Distal Parenchyma in Experimental Chronic Allergic Inflammation
    (2013) GOBBATO, Nathalia Brandao; SOUZA, Flavia Castro Ribas de; FUMAGALLI, Stella Bruna Napolitano; LOPES, Fernanda Degobbi Tenorio Quirino dos Santos; PRADO, Carla Maximo; MARTINS, Milton Arruda; TIBERIO, Iolanda de Fatima Lopes Calvo; LEICK, Edna Aparecida
    Aims. Compare the effects of montelukast or dexamethasone in distal lung parenchyma and airway walls of guinea pigs (GP) with chronic allergic inflammation. Methods. GP have inhaled ovalbumin (OVA group-2x/week/4weeks). After the 4th inhalation, GP were treated with montelukast or dexamethasone. After 72 hours of the 7th inhalation, GP were anesthetised, and lungs were removed and submitted to histopathological evaluation. Results. Montelukast and dexamethasone treatments reduced the number of eosinophils in airway wall and distal lung parenchyma compared to OVA group (P < 0.05). On distal parenchyma, both treatments were effective in reducing RANTES, NF-kappa B, and fibronectin positive cells compared to OVA group (P < 0.001). Montelukast was more effective in reducing eotaxin positive cells on distal parenchyma compared to dexamethasone treatment (P < 0.001), while there was a more expressive reduction of IGF-I positive cells in OVA-D group (P < 0.001). On airway walls, montelukast and dexamethasone were effective in reducing IGF-I, RANTES, and fibronectin positive cells compared to OVA group (P < 0.05). Dexamethasone was more effective in reducing the number of eotaxin and NF-kappa B positive cells than Montelukast (P < 0.05). Conclusions. In this animal model, both treatments were effective in modulating allergic inflammation and remodeling distal lung parenchyma and airway wall, contributing to a better control of the inflammatory response.
  • article 15 Citação(ões) na Scopus
    The Plant Proteinase Inhibitor CrataBL Plays a Role in Controlling Asthma Response in Mice
    (2018) BORTOLOZZO, Anelize Sartori Santos; RODRIGUES, Adriana Palmeira Dias; ARANTES-COSTA, Fernanda Magalhaes; SARAIVA-ROMANHOLO, Beatriz Mangueira; SOUZA, Flavia Castro Ribas de; BRUGGEMANN, Thayse Regina; BRITO, Marlon Vilela de; FERREIRA, Rodrigo da Silva; CORREIA, Maria Tereza dos Santos; PAIVA, Patricia Maria Guedes; PRADO, Carla Maximo; LEICK, Edna Aparecida; OLIVA, Maria Luiza Vilela; MARTINS, Milton de Arruda; RUIZ-SCHUTZ, Viviane Christina; RIGHETTI, Renato Fraga; TIBERIO, Iolanda de Fatima Lopes Calvo
    Background. CrataBL is a protein isolated from Crataeva tapia bark. It has been shown to exhibit several biological properties, including anti-inflammatory, analgesic, antitumor, and insecticidal activities. There are no studies evaluating the role of CrataBL in experimental asthma models. Aim. To evaluate the effects of CrataBL on lung mechanics, inflammation, remodeling, and oxidative stress activation of mice with allergic pulmonary inflammation. Materials and Methods. BALB/c mice (6-7 weeks old, 25-30g) were divided into four groups: nonsensitized and nontreated mice (C group, n=8); ovalbumin- (OVA-) sensitized and nontreated mice (OVA group, n=8); nonsensitized and CrataBL-treated mice (C+CR group, n=8); OVA-sensitized and CrataBL-treated mice (OVA+CR group, n=8). We evaluated hyperresponsiveness to methacholine, bronchoalveolar lavage fluid (BALF), pulmonary inflammation, extracellular matrix remodeling, and oxidative stress markers. Results. CrataBL treatment in OVA- sensitized mice (OVA+CR group) attenuated the following variables compared to OVA- sensitized mice without treatment (OVA group) (all p<0.05): (1) respiratory system resistance (Rrs) and elastance (Ers) after methacholine challenge; (2) total cells, macrophages, polymorphonuclear cells, and lymphocytes in BALF; (3) eosinophils and volume fraction of collagen and elastic fibers in the airway and alveolar wall according to histopathological and morphometry analysis; (4) IL-4-, IL-5-, IL-13-, IL-17-, IFN-gamma-, MMP-9-, TIMP-1-, TGF-beta-, iNOS-, and NF-kB-positive cells and volume of 8-iso-PGF2 in airway and alveolar septa according to immunohistochemistry; and (5) IL-4, IL-5, and IFN-according to an ELISA. Conclusion. CrataBL contributes to the control of hyperresponsiveness, pulmonary inflammation, extracellular matrix remodeling, and oxidative stress responses in an animal model of chronic allergic pulmonary inflammation.