RAFAEL LOCH BATISTA

(Fonte: Lattes)
Índice h a partir de 2011
11
Projetos de Pesquisa
Unidades Organizacionais
Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina - Médico
Instituto do Câncer do Estado de São Paulo, Hospital das Clínicas, Faculdade de Medicina - Médico
LIM/42 - Laboratório de Hormônios e Genética Molecular, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 8 de 8
  • article 71 Citação(ões) na Scopus
    Management of 46,XY Differences/Disorders of Sex Development (DSD) Throughout Life
    (2019) WISNIEWSKI, Amy B.; BATISTA, Rafael L.; COSTA, Elaine M. F.; FINLAYSON, Courtney; SIRCILI, Maria Helena Palma; DENES, Francisco Tibor; DOMENICE, Sorahia; MENDONCA, Berenice B.
    Differences/disorders of sex development (DSD) are a heterogeneous group of congenital conditions that result in discordance between an individual's sex chromosomes, gonads, and/or anatomic sex. Advances in the clinical care of patients and families affected by 46,XY DSD have been achieved since publication of the original Consensusmeeting in 2006. The aims of this paper are to review what is known about morbidity and mortality, diagnostic tools and timing, sex of rearing, endocrine and surgical treatment, fertility and sexual function, and quality of life in people with 46,XY DSD. The role for interdisciplinary health care teams, importance of establishing a molecular diagnosis, and need for research collaborations using patient registries to better understand long-term outcomes of specific medical and surgical interventions are acknowledged and accepted. Topics that require further study include prevalence and incidence, understanding morbidity and mortality as these relate to specific etiologies underlying 46,XY DSD, appropriate and optimal options for genitoplasty, long-term quality of life, sexual function, involvement with intimate partners, and optimizing fertility potential.
  • article 28 Citação(ões) na Scopus
    Integrative and Analytical Review of the 5-Alpha-Reductase Type 2 Deficiency Worldwide
    (2020) BATISTA, Rafael Loch; MENDONCA, Berenice Bilharinho
    Introduction: The conversion of testosterone into dihydrotestosterone is catalyzed by the 5 alpha-reductase type 2 enzyme which plays a crucial role in the external genitalia virilization. It is encoded by the SRD5A2 gene. Allelic variants in this gene cause a 46,XY DSD with no genotype-phenotype relationship. It was firstly reported in the early 70s from isolated clusters. Since then, several cases have been reported. Putting together, it will expand the knowledge on the molecular bases of androgen milieu. Methods: We searched for SRD5A2 allelic variants (AV) in the literature (PubMed, Embase, MEDLINE) and websites (ensembl, HGMD, ClinVar). Only cases with AV in both alleles, either in homozygous or compound heterozygous were included. The included cases were analyzed according to ethnicity, exon, domain, aminoacid (aa) conservation, age at diagnosis, sex assignment, gender reassignment, external genitalia virilization and functional studies. External genitalia virilization was scored using Sinnecker scale. Conservation analysis was carried out using the CONSURF platform. For categorical variables, we used X2 test and Cramer's V. Continuous variables were analyzed by t test or ANOVA. Concordance was estimated by Kappa. Results: We identified 434 cases of 5ARD2 deficiencies from 44 countries. Most came from Turkey (23%), China (17%), Italy (9%), and Brazil (7%). Sixty-nine percent were assigned as female. There were 70% of homozygous allelic variants and 30% compound heterozygous. Most were missense variants (76%). However, small indels (11%), splicing (5%) and large deletions (4%) were all reported. They were distributed along with all exons with exon 1 (33%) and exon 4 (25%) predominance. Allelic variants in the exon 4 (NADPH-binding domain) resulted in lower virilization (p<0.0001). The codons 55, 65, 196, 235 and 246 are hotspots making up 25% of all allelic variants. Most of them (76%) were located at conserved aa. However, allelic variants at non-conserved aa were more frequently indels (28% vs 6%; p<0.01). The overall rate of gender change from female to male ranged from 16% to 70%. The lowest rate of gender change from female to male occurred in Turkey and the highest in Brazil. External genitalia virilization was similar between those who changed and those who kept their assigned gender. The gender change rate was significantly different across the countries (V=0.44; p<0.001) even with similar virilization scores. Conclusion: 5ARD2 deficiency has a worldwide distribution. Allelic variants at the NADPH-ligand region cause lower virilization. Genitalia virilization influenced sex assignment but not gender change which was influenced by cultural aspects across the countries. Molecular diagnosis influenced on sex assignment, favoring male sex assignment in newborns with 5 alpha-reductase type 2 deficiency.
  • article 3 Citação(ões) na Scopus
    The Molecular Basis of 5 alpha-Reductase Type 2 Deficiency
    (2022) BATISTA, Rafael L.; MENDONCA, Berenice B.
    The 5 alpha-reductase type 2 enzyme catalyzes the conversion of testosterone into dihydrotestosterone, playing a crucial role in male development. This enzyme is encoded by the SRD5A2 gene, which maps to chromosome 2 (2p23), consists of 5 exons and 4 introns, and encodes a 254 amino acid protein. Disruptions in this gene are the molecular etiology of a subgroup of differences of sex development (DSD) in 46,XY patients. Affected individuals present a large range of external genitalia undervirilization, ranging from almost typically female external genitalia to predominantly typically male external genitalia with minimal undervirilization, including isolated micropenis. This is an updated review of the implication of the SRD5A2 gene in 5 alpha-reductase type 2 enzyme deficiency. For that, we identified 451 cases from 48 countries of this particular 46,XY DSD from the literature with reported variants in the SRD5A2 gene. Herein, we present the SRD5A2 mutational profile, the SRD5A2 polymorphisms, and the functional studies related to SRD5A2 variants to detail the molecular etiology of this condition. (c) 2022 S. Karger AG, Base
  • article 5 Citação(ões) na Scopus
    The Use of Genetics for Reaching a Diagnosis in XY DSD
    (2022) AHMED, S. Faisal; ALIMUSINA, Malika; BATISTA, Rafael L.; DOMENICE, Sorahia; GOMES, Nathalia Lisboa; MCGOWAN, Ruth; PATJAMONTRI, Supitcha; MENDONCA, Berenice B.
    Reaching a firm diagnosis is vital for the long-term management of a patient with a difference or disorder of sex development (DSD). This is especially the case in XY DSD where the diagnostic yield is particularly low. Molecular genetic technology is playing an increasingly important role in the diagnostic process, and it is highly likely that it will be used more often at an earlier stage in the diagnostic process. In many cases of DSD, the clinical utility of molecular genetics is unequivocally clear, but in many other cases there is a need for careful exploration of the benefit of genetic diagnosis through long-term monitoring of these cases. Furthermore, the incorporation of molecular genetics into the diagnostic process requires a careful appreciation of the strengths and weaknesses of the evolving technology, and the interpretation of the results requires a clear understanding of the wide range of conditions that are associated with DSD.
  • article 73 Citação(ões) na Scopus
    Steroid 5 alpha-reductase 2 deficiency
    (2016) MENDONCA, Berenice B.; BATISTA, Rafael Loch; DOMENICE, Sorahia; COSTA, Elaine M. F.; ARNHOLD, Ivo J. P.; RUSSELL, David W.; WILSON, Jean D.
    Dihydrotestosterone is a potent androgen metabolite formed from testosterone by action of 5 alpha-reductase isoenzymes. Mutations in the type 2 isoenzyme cause a disorder of 46,XY sex development, termed 5a-reductase type 2 deficiency and that was described forty years ago. Many mutations in the encoding gene have been reported in different ethnic groups. In affected 46,XY individuals, female external genitalia are common, but Mullerian ducts regress, and the internal urogenital tract is male. Most affected males are raised as females, but virilization occurs at puberty, and male social sex develops thereafter with high frequency. Fertility can be achieved in some affected males with assisted reproduction techniques, and adults with male social sex report a more satisfactory sex life and quality of life as compared to affected individuals with female social sex.
  • article 4 Citação(ões) na Scopus
    Central adrenal insufficiency: who, when, and how? From the evidence to the controversies - an exploratory review
    (2022) BITENCOURT, Mariana Rechia; BATISTA, Rafael Loch; BISCOTTO, Isabela; CARVALHO, Luciani R.
    Central adrenal insufficiency (CAI) is a life-threatening disorder. This occurs when ACTH production is insufficient, leading to low cortisol levels. Since corticosteroids are crucial to many metabolic responses under organic stress and inflammatory conditions, CAI recognition and prompt treatment are vital. However, the diagnosis of CAI is challenging. This is not only because its clinical presentation is usually oligosymptomatic, but also because the CAI laboratory investigation presents many pitfalls. Thus, the clarification of when to use each test could be helpful in many contexts. The CAI challenge is also involved in treatment: Several formulations of synthetic steroids exist, followed by the lack of a biomarker for glucocorticoid replacement. This review aims to access all available literature to synthesize important topics about who should investigate CAI, when it should be suspected, and how CAI must be treated. Arch Endocrinol Metab. 2022;66(4):541-50
  • article 2 Citação(ões) na Scopus
    Mild Androgen Insensitivity Syndrome: The Current Landscape
    (2022) BATISTA, Rafael Loch; CRAVEIRO, Flora Ladeira; RAMOS, Raquel Martinez; MENDONCA, Berenice Bilharinho
    Objective: Mild androgen insensitivity syndrome (MAIS) belongs to the androgen insensitivity syndrome (AIS) spectrum, an X-linked genetic disease that is the most common cause of differences in sex development. Unfortunately, AIS studies mainly focus on the partial and complete phenotypes, and the mild phenotype (MAIS) has been barely reported. Our purpose is to explore the MAIS facets, clinical features, and molecular aspects. Methods: We collected all reported MAIS cases in the medical literature and presented them based on the phenotype and molecular diagnosis. Results: We identified 49 different androgen receptor (AR) mutations in 69 individuals in the literature. We compared the AR mutations presented in individuals with MAIS with AR mutations previously re-ported in other AIS phenotypes (partial and complete) regarding the type, location, genotype-phenotype correlation, and functional studies. Conclusion: This review provides a landscape of the mild phenotype of AIS. Most patients with MAIS present with male factor infertility. Therefore, AR gene sequencing should be considered during male factor infertility investigation, even in males with typically male external genitalia. In addition, MAIS can be part of other medical conditions, such as X-linked spinal and bulbar muscular atrophy (Kennedy disease).
  • article 109 Citação(ões) na Scopus
    Androgen insensitivity syndrome: a review
    (2018) BATISTA, Rafael Loch; COSTA, Elaine M. Frade; RODRIGUES, Andresa de Santi; GOMES, Nathalia Lisboa; FARIA JR., Jose Antonio; NISHI, Mirian Y.; ARNHOLD, Ivo Jorge Prado; DOMENICE, Sorahia; MENDONCA, Berenice Bilharinho de
    Androgenic insensitivity syndrome is the most common cause of disorders of sexual differentiation in 46, XY individuals. It results from alterations in the androgen receptor gene, leading to a frame of hormonal resistance, which may present clinically under 3 phenotypes: complete (CAIS), partial (PAIS) or mild (MAIS). The androgen receptor gene has 8 exons and 3 domains, and allelic variants in this gene occur in all domains and exons, regardless of phenotype, providing a poor genotype phenotype correlation in this syndrome. Typically, laboratory diagnosis is made through elevated levels of LH and testosterone, with little or no virilization. Treatment depends on the phenotype and social sex of the individual. Open issues in the management of androgen insensitivity syndromes includes decisions on sex assignment, timing of gonadectomy, fertility, physcological outcomes and genetic counseling.