FERNANDA DEGOBBI TENORIO QUIRINO DOS SANTOS LOPES

(Fonte: Lattes)
Índice h a partir de 2011
22
Projetos de Pesquisa
Unidades Organizacionais
LIM/20 - Laboratório de Terapêutica Experimental, Hospital das Clínicas, Faculdade de Medicina
LIM/05 - Laboratório de Poluição Atmosférica Experimental, Hospital das Clínicas, Faculdade de Medicina

Resultados de Busca

Agora exibindo 1 - 2 de 2
  • article 104 Citação(ões) na Scopus
    Aerobic exercise attenuates pulmonary injury induced by exposure to cigarette smoke
    (2012) TOLEDO, A. C.; MAGALHAES, R. M.; HIZUME, D. C.; VIEIRA, R. P.; BISELLI, P. J. C.; MORIYA, H. T.; MAUAD, T.; LOPES, F. D. T. Q. S.; MARTINS, M. A.
    It has recently been suggested that regular exercise reduces lung function decline and risk of chronic obstructive pulmonary disease (COPD) among active smokers; however, the mechanisms involved in this effect remain poorly understood. The present study evaluated the effects of regular exercise training in an experimental mouse model of chronic cigarette smoke exposure. Male C57BL/6 mice were divided into four groups (control, exercise, smoke and smoke+exercise). For 24 weeks, we measured respiratory mechanics, mean linear intercept, inflammatory cells and reactive oxygen species (ROS) in bronchoalveolar lavage (BAL) fluid, collagen deposition in alveolar walls, and the expression of antioxidant enzymes, matrix metalloproteinase 9, tissue inhibitor of metalloproteinase (TIMP) 1, interleukin (IL)-10 and 8-isoprostane in alveolar walls. Exercise attenuated the decrease in pulmonary elastance (p<0.01) and the increase in mean linear intercept (p=0.003) induced by cigarette smoke exposure. Exercise substantially inhibited the increase in ROS in BAL fluid and 8-isoprostane expression in lung tissue induced by cigarette smoke. In addition, exercise significantly inhibited the decreases in IL-10, TIMP1 and CuZn superoxide dismutase induced by exposure to cigarette smoke. Exercise also increased the number of cells expressing glutathione peroxidase. Our results suggest that regular aerobic physical training of moderate intensity attenuates the development of pulmonary disease induced by cigarette smoke exposure.
  • article 24 Citação(ões) na Scopus
    Anacardic Acids from Cashew Nuts Ameliorate Lung Damage Induced by Exposure to Diesel Exhaust Particles in Mice
    (2013) CARVALHO, Ana Laura Nicoletti; ANNONI, Raquel; TORRES, Larissa Helena Lobo; DURAO, Ana Carolina Cardoso Santos; SHIMADA, Ana Lucia Borges; ALMEIDA, Francine Maria; HEBEDA, Cristina Bichels; LOPES, Fernanda Degobbi Tenorio Quirino Santos; DOLHNIKOFF, Marisa; MARTINS, Milton Arruda; SILVA, Luiz Fernando Ferraz; FARSKY, Sandra Helena Poliselli; SALDIVA, Paulo Hilario Nascimento; ULRICH, Cornelia M.; OWEN, Robert W.; MARCOURAKIS, Tania; TREVISAN, Maria Teresa Salles; MAUAD, Thais
    Anacardic acids from cashew nut shell liquid, a Brazilian natural substance, have antimicrobial and antioxidant activities and modulate immune responses and angiogenesis. As inflammatory lung diseases have been correlated to environmental pollutants exposure and no reports addressing the effects of dietary supplementation with anacardic acids on lung inflammation in vivo have been evidenced, we investigated the effects of supplementation with anacardic acids in a model of diesel exhaust particle-(DEP-) induced lung inflammation. BALB/c mice received an intranasal instillation of 50 mu g of DEP for 20 days. Ten days prior to DEP instillation, animals were pretreated orally with 50, 150, or 250mg/kg of anacardic acids or vehicle (100 mu L of cashew nut oil) for 30 days. The biomarkers of inflammatory and antioxidant responses in the alveolar parenchyma, bronchoalveolar lavage fluid (BALF), and pulmonary vessels were investigated. All doses of anacardic acids ameliorated antioxidant enzyme activities and decreased vascular adhesion molecule in vessels. Animals that received 50mg/kg of anacardic acids showed decreased levels of neutrophils and tumor necrosis factor in the lungs and BALF, respectively. In summary, we demonstrated that AAs supplementation has a potential protective role on oxidative and inflammatory mechanisms in the lungs.