A scan of all coding region variants of the human genome, identifies 13q12.2-rs9579139 and 15q24.1-rs2277598 as novel risk loci for pancreatic ductal adenocarcinoma

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
GIACCHERINI, Matteo
GORI, Leonardo
GENTILUOMO, Manuel
FARINELLA, Riccardo
CERVENA, Klara
SKIECEVICIENE, Jurgita
DIJK, Frederike
CAPURSO, Gabriele
VEZAKIS, Antonis
ARCHIBUGI, Livia
Citação
CARCINOGENESIS, v.44, n.8-9, p.642-649, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Coding sequence variants comprise a small fraction of the germline genetic variability of the human genome. However, they often cause deleterious change in protein function and are therefore associated with pathogenic phenotypes. To identify novel pancreatic ductal adenocarcinoma (PDAC) risk loci, we carried out a complete scan of all common missense and synonymous SNPs and analysed them in a case-control study comprising four different populations, for a total of 14 538 PDAC cases and 190 657 controls. We observed a statistically significant association between 13q12.2-rs9581957-T and PDAC risk (P = 2.46 x 10(-9)), that is in linkage disequilibrium (LD) with a deleterious missense variant (rs9579139) of the URAD gene. Recent findings suggest that this gene is active in peroxisomes. Considering that peroxisomes have a key role as molecular scavengers, especially in eliminating reactive oxygen species, a malfunctioning URAD protein might expose the cell to a higher load of potentially DNA damaging molecules and therefore increase PDAC risk. The association was observed in individuals of European and Asian ethnicity. We also observed the association of the missense variant 15q24.1-rs2277598-T, that belongs to BBS4 gene, with increased PDAC risk (P = 1.53 x 10(-6)). rs2277598 is associated with body mass index and is in LD with diabetes susceptibility loci. In conclusion, we identified two missense variants associated with the risk of developing PDAC independently from the ethnicity highlighting the importance of conducting re-analysis of genome-wide association studies (GWASs) in light of functional data. [GRAPHICS] .
Palavras-chave
Referências
  1. Adzhubei IA, 2010, NAT METHODS, V7, P248, DOI 10.1038/nmeth0410-248
  2. Altshuler D, 2010, NATURE, V467, P1061, DOI 10.1038/nature09534
  3. Aly DM, 2021, NAT GENET, DOI 10.1038/s41588-021-00948-2
  4. Amundadottir L, 2009, NAT GENET, V41, P986, DOI 10.1038/ng.429
  5. Babteen NA, 2020, GENE, V737, DOI 10.1016/j.gene.2020.144435
  6. Campa D, 2023, CRIT REV ONCOL HEMAT, V186, DOI 10.1016/j.critrevonc.2023.104020
  7. Campa D, 2020, INT J CANCER, V147, P2065, DOI 10.1002/ijc.33004
  8. Campa D, 2015, INT J CANCER, V137, P2175, DOI 10.1002/ijc.29590
  9. Campa D, 2013, DIGEST LIVER DIS, V45, P95, DOI 10.1016/j.dld.2012.09.014
  10. Charbonneau B, 2014, CANCER RES, V74, P852, DOI 10.1158/0008-5472.CAN-13-1051
  11. Childs EJ, 2015, NAT GENET, V47, P911, DOI 10.1038/ng.3341
  12. Corradi C, 2023, J MED GENET, V60, P980, DOI 10.1136/jmg-2022-108910
  13. Corradi C, 2021, INT J CANCER, V148, P2779, DOI 10.1002/ijc.33475
  14. Ferlay J, 2021, INT J CANCER, V149, P778, DOI 10.1002/ijc.33588
  15. Forsythe E, 2013, EUR J HUM GENET, V21, P8, DOI 10.1038/ejhg.2012.115
  16. Galeotti AA, 2021, J MED GENET, V58, P369, DOI 10.1136/jmedgenet-2020-106961
  17. Gentiluomo M, 2022, SEMIN CANCER BIOL, V79, P105, DOI 10.1016/j.semcancer.2020.08.003
  18. Ghoussaini M, 2021, NUCLEIC ACIDS RES, V49, pD1311, DOI 10.1093/nar/gkaa840
  19. Graff M, 2017, PLOS GENET, V13, DOI 10.1371/journal.pgen.1006528
  20. Hall MJ, 2021, CANCER PREV RES, V14, P433, DOI 10.1158/1940-6207.CAPR-20-0448
  21. Huang L, 2019, GUT, V68, P130, DOI 10.1136/gutjnl-2017-314828
  22. Jiang X, 2022, GENE CHROMOSOME CANC, V61, P523, DOI 10.1002/gcc.23042
  23. Justice AE, 2017, NAT COMMUN, V8, DOI 10.1038/ncomms14977
  24. Kanai M, 2018, NAT GENET, V50, P390, DOI 10.1038/s41588-018-0047-6
  25. Klein AP, 2021, NAT REV GASTRO HEPAT, V18, P493, DOI 10.1038/s41575-021-00457-x
  26. Klein AP, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-02942-5
  27. Lin YS, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16711-w
  28. Locke AE, 2015, NATURE, V518, P197, DOI 10.1038/nature14177
  29. Lonsdale J, 2013, NAT GENET, V45, P580, DOI 10.1038/ng.2653
  30. Low SK, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011824
  31. Lu Y., 2021, FRONT GENET, V12, P1
  32. Lu Y, 2021, FRONT ONCOL, V11, DOI 10.3389/fonc.2021.771312
  33. Moyer CL, 2020, CANCER RES, V80, P857, DOI 10.1158/0008-5472.CAN-19-1991
  34. Ng PC, 2001, GENOME RES, V11, P863, DOI 10.1101/gr.176601
  35. Petersen GM, 2010, NAT GENET, V42, P224, DOI 10.1038/ng.522
  36. Pistoni L, 2021, CARCINOGENESIS, V42, P1037, DOI 10.1093/carcin/bgab057
  37. Rahib L, 2014, CANCER RES, V74, P2913, DOI 10.1158/0008-5472.CAN-14-0155
  38. Richardson TG, 2020, BMJ-BRIT MED J, V369, DOI 10.1136/bmj.m1203
  39. Rubinstein JC, 2020, GENE CHROMOSOME CANC, V59, P64, DOI 10.1002/gcc.22792
  40. Sakaguchi T, 2020, SURG TODAY, V50, P335, DOI 10.1007/s00595-020-01963-2
  41. Schumacher FR, 2018, NAT GENET, V50, P928, DOI 10.1038/s41588-018-0142-8
  42. Sheng XJ, 2012, MOL BIOL REP, V39, P7237, DOI 10.1007/s11033-012-1554-7
  43. Sinnott-Armstrong N, 2021, NAT GENET, V53, P185, DOI 10.1038/s41588-020-00757-z
  44. Sternberg PW, 2022, GENETICS, V220, DOI 10.1093/genetics/iyac022
  45. Turcot V, 2018, NAT GENET, V50, P26, DOI 10.1038/s41588-017-0011-x
  46. Wolpin BM, 2014, NAT GENET, V46, P994, DOI 10.1038/ng.3052
  47. Wu J, 2021, BMC MED GENOMICS, V14, DOI 10.1186/s12920-020-00862-2
  48. Zhang MF, 2016, ONCOTARGET, V7, P66328, DOI 10.18632/oncotarget.11041