Plasma virome of 781 Brazilians with unexplained symptoms of arbovirus infection include a novel parvovirus and densovirus

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
FAHSBENDER, Elizabeth
MILAGRES, Flavio Augusto de Padua
BRUSTULIN, Rafael
MONTEIRO, Fred Julio Costa
REGO, Marlisson Octavio da Silva
RIBEIRO, Edcelha Soares D'Athaide
DELWART, Eric
Citação
PLOS ONE, v.15, n.3, article ID e0229993, 14p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Plasma from patients with dengue-like symptoms was collected in 2013 to 2016 from the Brazilian states of Tocantins and Amapa. 781 samples testing negative for IgM against Dengue, Zika, and Chikungunya viruses and for flaviviruses, alphaviruses and enteroviruses RNA using RT-PCRs were analyzed using viral metagenomics. Viral particles-associated nucleic acids were enriched, randomly amplified, and deep sequenced in 102 mini-pools generating over 2 billion reads. Sequence data was analyzed for the presence of known and novel eukaryotic viral reads. Anelloviruses were detected in 80%, human pegivirus 1 in 19%, and parvovirus B19 in 17% of plasma pools. HIV and enteroviruses were detected in two pools each. Previously uncharacterized viral genomes were also identified, and their presence in single plasma samples confirmed by PCR. Chapparvovirus and ambidensovirus genomes, both in the Parvoviridae family, were partially characterized showing 33% and 34% identity in their NS1 sequences to their closest relative. Molecular surveillance using pre-existing plasma from febrile patients provides a readily scalable approach for the detection of novel, potentially emerging, viruses.
Palavras-chave
Referências
  1. Asplund M, 2019, CLIN MICROBIOL INFEC, V25, P1277, DOI 10.1016/j.cmi.2019.04.028
  2. Baker KS, 2013, VIROLOGY, V441, P95, DOI 10.1016/j.virol.2013.03.014
  3. Berg MG, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1005325
  4. Brito F, 2018, VOX SANG, V113, P601, DOI 10.1111/vox.12695
  5. Chiu CY, 2019, NAT REV GENET, V20, P341, DOI 10.1038/s41576-019-0113-7
  6. Chivero ET, 2015, J GEN VIROL, V96, P1521, DOI 10.1099/vir.0.000086
  7. Chong R, 2019, J VIROL, V93, DOI [10.1128/JVI.00205-19, 10.1128/jvi.00205-19]
  8. Coller KE, 2020, EMERG INFECT DIS, V26, P265, DOI 10.3201/eid2602.190434
  9. Coller KE, 2016, J CLIN MICROBIOL, V54, P2023, DOI 10.1128/JCM.00515-16
  10. Cordey S, 2019, EMERG MICROBES INFEC, V8, P613, DOI 10.1080/22221751.2019.1603791
  11. Cordey S, 2018, EMERG MICROBES INFEC, V7, DOI 10.1038/s41426-018-0025-1
  12. de Souza WM, 2017, J GEN VIROL, V98, P225, DOI 10.1099/jgv.0.000671
  13. de Villiers EM, 2009, J GEN VIROL, V90, P1999, DOI 10.1099/vir.0.011478-0
  14. Deng XT, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv002
  15. Di Paola N, 2019, CLIN INFECT DIS, V68, P810, DOI 10.1093/cid/ciy630
  16. Du J, 2019, FRONT MICROBIOL, V10, DOI 10.3389/fmicb.2019.02815
  17. Edgar RC, 2004, NUCLEIC ACIDS RES, V32, P1792, DOI 10.1093/nar/gkh340
  18. El-Far M, 2004, VIRUS RES, V99, P17, DOI 10.1016/j.virusres.2003.09.010
  19. FAHSBENDER E, 2019, [No title captured], V11, DOI 10.3390/V11050398
  20. Fukumoto H, 2013, VIROL J, V10, DOI 10.1186/1743-422X-10-84
  21. Furuta RA, 2015, TRANSFUSION, V55, P1889, DOI 10.1111/trf.13057
  22. Giry C, 2017, BMC MICROBIOL, V17, DOI 10.1186/s12866-017-1080-9
  23. Grard G, 2012, PLOS PATHOG, V8, DOI 10.1371/journal.ppat.1002924
  24. Hewson I, 2014, P NATL ACAD SCI USA, V111, P17278, DOI 10.1073/pnas.1416625111
  25. Holmes EC, 2019, CLIN MICROBIOL INFEC, V25, P1167, DOI 10.1016/j.cmi.2019.06.019
  26. Jerome H, 2019, J INFECTION, V79, P383, DOI 10.1016/j.jinf.2019.08.003
  27. JONES DT, 1992, COMPUT APPL BIOSCI, V8, P275, DOI 10.1093/bioinformatics/8.3.275
  28. Jones MS, 2005, J VIROL, V79, P8230, DOI 10.1128/JVI.79.13.8230-8236.2005
  29. JOUSSET FX, 1993, VIRUS RES, V29, P99, DOI 10.1016/0168-1702(93)90052-O
  30. Kapoor A, 2015, MBIO, V6, DOI 10.1128/mBio.01466-15
  31. Kapusinszky B, 2017, J VIROL, V91, DOI 10.1128/JVI.00952-17
  32. Krupovic M, 2016, ARCH VIROL, V161, P2633, DOI 10.1007/s00705-016-2943-3
  33. Lamberto I, 2014, MICROBIOL RESOUR ANN, V2, DOI 10.1128/genomeA.00848-14
  34. Lau P, 2017, TRANSFUSION, V57, P1787, DOI 10.1111/trf.14148
  35. Laubscher F, 2019, MICROBIOL RESOUR ANN, V8, DOI 10.1128/MRA.00764-19
  36. Li L, 2015, J VIROL METHODS, V213, P139, DOI 10.1016/j.jviromet.2014.12.002
  37. Lima DA, 2019, VIRUS RES, V261, P9, DOI 10.1016/j.virusres.2018.12.005
  38. Liu S, 2016, P NATL ACAD SCI USA, V113, P12803, DOI 10.1073/pnas.1608013113
  39. Liu SY, 2018, CELL, V175, P347, DOI 10.1016/j.cell.2018.08.016
  40. Liu XP, 2020, VIROLOGY, V539, P80, DOI 10.1016/j.virol.2019.10.013
  41. Macera L, 2019, NEW MICROBIOL, V42, P118
  42. Moustafa A, 2017, PLOS PATHOG, V13, DOI 10.1371/journal.ppat.1006292
  43. Naccache SN, 2013, J VIROL, V87, P11966, DOI 10.1128/JVI.02323-13
  44. Ngoi CN, 2017, J GEN VIROL, V98, P517, DOI 10.1099/jgv.0.000762
  45. Ngoi CN, 2016, J GEN VIROL, V97, P3359, DOI 10.1099/jgv.0.000644
  46. Anh NT, 2019, J CLIN MICROBIOL, V57, DOI 10.1128/JCM.00386-19
  47. Anh NT, 2018, EMERG INFECT DIS, V24, P2063, DOI 10.3201/eid2411.180668
  48. Palinski RM, 2016, VIRUS GENES, V52, P564, DOI 10.1007/s11262-016-1322-1
  49. Pancaldi C, 2011, BLOOD, V117, P7099, DOI 10.1182/blood-2010-09-310557
  50. Patel P, 2013, VIROL J, V10, DOI 10.1186/1743-422X-10-58
  51. PENZES JJ, 2019, [No title captured], V11, DOI 10.3390/v11060525
  52. Ramesh A, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0218318
  53. Reuter G, 2014, ARCH VIROL, V159, P2161, DOI 10.1007/s00705-014-2025-3
  54. Roediger B, 2018, CELL, V175, P530, DOI 10.1016/j.cell.2018.08.013
  55. Sauvage V, 2016, BLOOD TRANSFUS-ITALY, V14, P400, DOI 10.2450/2016.0160-15
  56. Sawaswong V, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11100971
  57. Schowalter RM, 2010, CELL HOST MICROBE, V7, P509, DOI 10.1016/j.chom.2010.05.006
  58. Shui JW, 2019, J GEN VIROL, V100, P968, DOI 10.1099/jgv.0.001266
  59. Somasekar S, 2017, CLIN INFECT DIS, V65, P1477, DOI 10.1093/cid/cix596
  60. Spandole S, 2015, ARCH VIROL, V160, P893, DOI 10.1007/s00705-015-2363-9
  61. Sridhar S, 2019, OPEN FORUM INFECT DI, V6, DOI 10.1093/ofid/ofz329
  62. Stremlau MH, 2015, PLOS NEGLECT TROP D, V9, DOI 10.1371/journal.pntd.0003631
  63. Tamura K, 2011, MOL BIOL EVOL, V28, P2731, DOI 10.1093/molbev/msr121
  64. Tijssen P, 2016, J INVERTEBR PATHOL, V140, P83, DOI 10.1016/j.jip.2016.09.005
  65. Phan TG, 2018, VIRUS GENES, V54, P33, DOI 10.1007/s11262-017-1514-3
  66. Phan TG, 2016, ARCH VIROL, V161, P3231, DOI 10.1007/s00705-016-3002-9
  67. Phan TG, 2015, VIROLOGY, V482, P98, DOI 10.1016/j.virol.2015.03.011
  68. Uch R, 2015, EMERG INFECT DIS, V21, P2096, DOI 10.3201/eid2111.150486
  69. Wang Y, 2019, ARCH VIROL, V164, P3, DOI 10.1007/s00705-018-4037-x
  70. Williams SH, 2018, MSPHERE, V3, DOI 10.1128/mSphere.00311-18
  71. Williams SH, 2018, MBIO, V9, DOI [10.1128/mBio.01354-17, 10.1128/mbio.01354-17]
  72. Wylie KM, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0027735
  73. Xie JT, 2011, VIROLOGY, V418, P49, DOI 10.1016/j.virol.2011.07.008
  74. Yang SX, 2016, VIROL J, V13, DOI 10.1186/s12985-016-0589-0
  75. Yang WT, 2016, INFECT GENET EVOL, V41, P107, DOI 10.1016/j.meegid.2016.03.035
  76. Yinda CK, 2018, VIRUS EVOL, V4, DOI 10.1093/ve/vey008
  77. Yozwiak NL, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001485
  78. Zhang SY, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102724
  79. Zhang W, 2016, TRANSFUSION, V56, P2248, DOI 10.1111/trf.13692