Effect on Antimicrobial Resistance of a Policy Restricting Over-the-Counter Antimicrobial Sales in a Large Metropolitan Area, Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
CENTERS DISEASE CONTROL & PREVENTION
Autores
BLAQUE, Manuela
MUSSARELLI, Rafael M.
FOSSALUZA, Victor
PIERROTTI, Ligia C.
CAMPANA, Gustavo
BRANDILEONE, Maria C.
ZANELLA, Rosemeire
ALMEIDA, Samanta C. G.
Citação
EMERGING INFECTIOUS DISEASES, v.28, n.1, p.180-187, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Although restricting over-the-counter (OTC) antimicrobial drug sales is recommended globally, no data have shown its effect on antimicrobial resistance (AMR) in bacteria. We evaluated the effect of a national policy restricting OTC antimicrobial sales, put in place in November 2010, on AMR in a metropolitan region of Sao Paulo, Brazil. We reviewed associations between antimicrobial sales from private pharmacies and AMR in 404,558 Escherichia coli and 5,797 Streptococcus pneumoniae isolates using a dynamic regression model based on a Bayesian approach. After policy implementation, a substantial drop in AMR in both bacterial species followed decreased amoxicillin and trimethoprim/sulfamethoxazole sales. Conversely, increased ciprofloxacin sales were associated with increased ciprofloxacin resistance, and extended spectrum beta-lactamases-positive E. coli isolates and azithromycin sales increases after 2013 were associated with increased erythromycin resistance in S. pneumoniae isolates. These findings suggest that restricting OTC antimicrobial sales may influence patterns of AMR, but multifaceted approaches are needed to avoid unintended consequences.
Palavras-chave
Referências
  1. Al-Marzooq F, 2014, BIOMED RES INT, V2014, DOI 10.1155/2014/601630
  2. Andrade AL, 2016, HUM VACC IMMUNOTHER, V12, P285, DOI 10.1080/21645515.2015.1117713
  3. Ben Zakour NL, 2016, MBIO, V7, DOI 10.1128/mBio.00347-16
  4. Brandileone MCD, 2019, VACCINE, V37, P5357, DOI 10.1016/j.vaccine.2019.07.043
  5. Brasil Ministry of Health, PORT SAUD INF SAUD
  6. Brasil Ministry of Health. National Agency for Health Surveillance, RES RDC 44 OCT 26 20
  7. (CLSI) Clinical and Laboratory Standards Institute, 2018, PERFORMANCE STANDARD, V28, DOI [DOI 10.1108/08876049410065598, 10.1108/08876049410065598]
  8. Correa RD, 2018, J BRAS PNEUMOL, V44, P405, DOI [10.1590/S1806-37562018000000130, 10.1590/s1806-37562018000000130]
  9. Dias R, 2008, EPIDEMIOL INFECT, V136, P928, DOI 10.1017/S0950268807009405
  10. Government of Brasil, BRAS I GEOGR STAT
  11. Heil Emily L, 2016, J Clin Microbiol, V54, P840, DOI 10.1128/JCM.02424-15
  12. Holmes AH, 2016, LANCET, V387, P176, DOI 10.1016/S0140-6736(15)00473-0
  13. Hutchinson James M, 2004, Can J Infect Dis, V15, P29
  14. Jacobs TG, 2019, BMC HEALTH SERV RES, V19, DOI 10.1186/s12913-019-4359-8
  15. Jarlier V, 2019, EUROSURVEILLANCE, V24, P7, DOI 10.2807/1560-7917.ES.2019.24.33.1800538
  16. Kempf M, 2011, MICROB DRUG RESIST, V17, P31, DOI 10.1089/mdr.2010.0031
  17. Kenyon C, 2019, INT J INFECT DIS, V85, P67, DOI 10.1016/j.ijid.2019.05.028
  18. Mattos KPH, 2017, J GLOB ANTIMICROB RE, V10, P195, DOI 10.1016/j.jgar.2017.05.023
  19. Migon HS, 2014, STAT INFERENCE INTEG, V2nd
  20. Moura ML, 2015, MEDICINE, V94, DOI 10.1097/MD.0000000000001605
  21. National Supplementary Health Agency, 2018, SECT HLTH DAT IND
  22. Palmu AA, 2018, PEDIATR INFECT DIS J, V37, P97, DOI 10.1097/INF.0000000000001810
  23. Pan American Health Organization, 2018, SIREVA 2 REG REP 201
  24. Van Katwyk SR, 2019, PLOS MED, V16, DOI 10.1371/journal.pmed.1002819
  25. World Health Organization, 2015, GLOB ACT PLAN ANT RE
  26. World Health Organization, 2019, WHO MOD LIST ESS MED