Taxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid species

dc.contributorSistema FMUSP-HC: Faculdade de Medicina da Universidade de São Paulo (FMUSP) e Hospital das Clínicas da FMUSP
dc.contributor.authorLIM, Shen Jean
dc.contributor.authorDAVIS, Brenton G.
dc.contributor.authorGILL, Danielle E.
dc.contributor.authorWALTON, Jillian
dc.contributor.authorNACHMAN, Erika
dc.contributor.authorENGEL, Annette Summers
dc.contributor.authorANDERSON, Laurie C.
dc.contributor.authorCAMPBELL, Barbara J.
dc.date.accessioned2019-05-30T13:57:47Z
dc.date.available2019-05-30T13:57:47Z
dc.date.issued2019
dc.description.abstractLucinidae clams harbor gammaproteobacterial thioautotrophic gill endosymbionts that are environmentally acquired. Thioautotrophic lucinid symbionts are related to metabolically similar symbionts associated with diverse marine host taxa and fall into three distinct phylogenetic clades. Most studies on the lucinid-bacteria chemosymbiosis have been done with seagrass-dwelling hosts, whose symbionts belong to the largest phylogenetic clade. In this study, we examined the taxonomy and functional repertoire of bacterial endosymbionts at an unprecedented resolution from Phacoides pectinatus retrieved from mangrove-lined coastal sediments, which are underrepresented in chemosymbiosis studies. The P. pectinatus thioautotrophic endosymbiont expressed metabolic gene variants for thioautotrophy, respiration, and nitrogen assimilation distinct from previously characterized lucinid thioautotrophic symbionts and other marine symbionts. At least two other bacterial species with different metabolisms were also consistently identified in the P. pectinatus gill microbiome, including a Kistimonas-like species and a Spirochaeta-like species. Bacterial transcripts involved in adhesion, growth, and virulence and mixotrophy were highly expressed, as were host-related hemoglobin and lysozyme transcripts indicative of sulfide/oxygen/CO2 transport and bactericidal activity. This study suggests the potential roles of P. pectinatus and its gill microbiome species in mangrove sediment biogeochemistry and offers insights into host and microbe metabolisms in the habitat.eng
dc.description.indexMEDLINEeng
dc.description.sponsorshipNational Science Foundation [DEB-1342785, DEB-1242721, DEB-1342763]
dc.identifier.citationISME JOURNAL, v.13, n.4, p.902-920, 2019
dc.identifier.doi10.1038/s41396-018-0318-3
dc.identifier.eissn1751-7370
dc.identifier.issn1751-7362
dc.identifier.urihttps://observatorio.fm.usp.br/handle/OPI/32028
dc.language.isoeng
dc.publisherNATURE PUBLISHING GROUPeng
dc.relation.ispartofIsme Journal
dc.rightsopenAccesseng
dc.rights.holderCopyright NATURE PUBLISHING GROUPeng
dc.subject.othersp nov.eng
dc.subject.otherchemoautotrophic symbiontseng
dc.subject.othersedimenticola-selenatireducenseng
dc.subject.otherenvironmental transmissioneng
dc.subject.otherphysiological proteomicseng
dc.subject.otherbacterial endosymbiontseng
dc.subject.otherecological importanceeng
dc.subject.othermethylcitrate cycleeng
dc.subject.otherriftia-pachyptilaeng
dc.subject.othergenome sequenceeng
dc.subject.wosEcologyeng
dc.subject.wosMicrobiologyeng
dc.titleTaxonomic and functional heterogeneity of the gill microbiome in a symbiotic coastal mangrove lucinid specieseng
dc.typearticleeng
dc.type.categoryoriginal articleeng
dc.type.versionpublishedVersioneng
dspace.entity.typePublication
hcfmusp.affiliation.countryEstados Unidos
hcfmusp.affiliation.countryisous
hcfmusp.author.externalLIM, Shen Jean:Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA
hcfmusp.author.externalDAVIS, Brenton G.:Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA; Med Univ South Carolina, Coll Med, Charleston, SC 29425 USA
hcfmusp.author.externalWALTON, Jillian:Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA
hcfmusp.author.externalNACHMAN, Erika:Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA
hcfmusp.author.externalENGEL, Annette Summers:Univ Tennessee, Dept Earth & Planetary Sci, Knoxville, TN 37996 USA
hcfmusp.author.externalANDERSON, Laurie C.:South Dakota Sch Mines & Technol, Dept Geol & Geol Engn, Rapid City, SD 57701 USA
hcfmusp.author.externalCAMPBELL, Barbara J.:Clemson Univ, Dept Biol Sci, Clemson, SC 29634 USA
hcfmusp.citation.scopus31
hcfmusp.contributor.author-fmusphcDANIELLE ELISE GILL
hcfmusp.description.beginpage902
hcfmusp.description.endpage920
hcfmusp.description.issue4
hcfmusp.description.volume13
hcfmusp.origemWOS
hcfmusp.origem.pubmed30518817
hcfmusp.origem.scopus2-s2.0-85058056716
hcfmusp.origem.wosWOS:000461719600005
hcfmusp.publisher.cityLONDONeng
hcfmusp.publisher.countryENGLANDeng
hcfmusp.relation.referenceAgarwala R, 2016, NUCLEIC ACIDS RES, V44, pD7, DOI 10.1093/nar/gkv1290eng
hcfmusp.relation.referenceALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1016/S0022-2836(05)80360-2eng
hcfmusp.relation.referenceAnkrah NYD, 2017, J BACTERIOL, V199, DOI 10.1128/JB.00872-16eng
hcfmusp.relation.referenceAntipov D, 2016, BIOINFORMATICS, V32, P1009, DOI 10.1093/bioinformatics/btv688eng
hcfmusp.relation.referenceAziz RK, 2008, BMC GENOMICS, V9, DOI 10.1186/1471-2164-9-75eng
hcfmusp.relation.referenceBall AD, 2009, J MOLLUS STUD, V75, P175, DOI 10.1093/mollus/eyp009eng
hcfmusp.relation.referenceBateman A, 2015, NUCLEIC ACIDS RES, V43, pD204, DOI 10.1093/nar/gku989eng
hcfmusp.relation.referenceBlazejak A, 2005, APPL ENVIRON MICROB, V71, P1553, DOI 10.1128/AEM.71.3.1553-1561.2005eng
hcfmusp.relation.referenceBowers RM, 2017, NAT BIOTECHNOL, V35, P725, DOI 10.1038/nbt.3893eng
hcfmusp.relation.referenceBrissac T, 2011, FEMS MICROBIOL ECOL, V75, P63, DOI 10.1111/j.1574-6941.2010.00989.xeng
hcfmusp.relation.referenceBrissac T, 2009, FEMS MICROBIOL ECOL, V67, P261, DOI 10.1111/j.1574-6941.2008.00626.xeng
hcfmusp.relation.referenceCampbell BJ, 2001, APPL ENVIRON MICROB, V67, P110, DOI 10.1128/AEM.67.1.110-117.2001eng
hcfmusp.relation.referenceCascales E, 2007, MICROBIOL MOL BIOL R, V71, P158, DOI 10.1128/MMBR.00036-06eng
hcfmusp.relation.referenceCavanaugh CM, 2006, PROKARYOTES: A HANDBOOK ON THE BIOLOGY OF BACTERIA, VOL 1, THIRD EDITION, P475, DOI 10.1007/0-387-30741-9_18eng
hcfmusp.relation.referenceChoi EJ, 2010, INT J SYST EVOL MICR, V60, P938, DOI 10.1099/ijs.0.014282-0eng
hcfmusp.relation.referenceChristo SW, 2016, BRAZ J BIOL, V76, P300, DOI 10.1590/1519-6984.12514eng
hcfmusp.relation.referenceDANDO PR, 1986, PROC R SOC SER B-BIO, V227, P227, DOI 10.1098/rspb.1986.0021eng
hcfmusp.relation.referencede Almeida A, 2007, APPL ENVIRON MICROB, V73, P7912, DOI 10.1128/AEM.01900-07eng
hcfmusp.relation.referenceDelepelaire P, 2004, BBA-MOL CELL RES, V1694, P149, DOI 10.1016/j.bbamcr.2004.05.001eng
hcfmusp.relation.referenceDELONG EF, 1989, SCIENCE, V243, P1360, DOI 10.1126/science.2466341eng
hcfmusp.relation.referenceDing JY, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00251eng
hcfmusp.relation.referenceDirks RM, 2004, P NATL ACAD SCI USA, V101, P15275, DOI 10.1073/pnas.0407024101eng
hcfmusp.relation.referenceDmytrenko O, 2014, BMC GENOMICS, V15, DOI 10.1186/1471-2164-15-924eng
hcfmusp.relation.referenceDolan SK, 2018, MICROBIOL-SGM, V164, P251, DOI 10.1099/mic.0.000604eng
hcfmusp.relation.referenceDoty TW, 2015, THESISeng
hcfmusp.relation.referenceDubilier N, 1999, MAR ECOL PROG SER, V178, P271, DOI 10.3354/meps178271eng
hcfmusp.relation.referenceDubilier N, 2008, NAT REV MICROBIOL, V6, P725, DOI 10.1038/nrmicro1992eng
hcfmusp.relation.referenceDuperron S, 2007, FEMS MICROBIOL ECOL, V59, P64, DOI 10.1111/j.1574-6941.2006.00194.xeng
hcfmusp.relation.referenceDuperron S, 2012, MICROBIOLOGYOPEN, V1, P467, DOI 10.1002/mbo3.47eng
hcfmusp.relation.referenceDurand P, 1996, MOL MAR BIOL BIOTECH, V5, P37eng
hcfmusp.relation.referenceEddie BJ, 2013, J BACTERIOL, V195, P399, DOI 10.1128/JB.01342-12eng
hcfmusp.relation.referenceEhara T, 2002, FEBS LETT, V531, P509, DOI 10.1016/S0014-5793(02)03608-6eng
hcfmusp.relation.referenceEspinosa EP, 2013, J EXP MAR BIOL ECOL, V448, P327, DOI 10.1016/j.jembe.2013.07.015eng
hcfmusp.relation.referenceFISHER MR, 1984, BIOL BULL, V167, P445, DOI 10.2307/1541289eng
hcfmusp.relation.referenceFlood BE, 2015, INT J SYST EVOL MICR, V65, P2522, DOI 10.1099/ijs.0.000295eng
hcfmusp.relation.referenceFrenkiel L, 1996, MAR BIOL, V125, P511eng
hcfmusp.relation.referenceFrenkiel L, 1997, INVERTEBR REPROD DEV, V31, P199, DOI 10.1080/07924259.1997.9672577eng
hcfmusp.relation.referenceFriedrich CG, 2001, APPL ENVIRON MICROB, V67, P2873, DOI 10.1128/AEM.67.7.2873-2882.2001eng
hcfmusp.relation.referenceFu LM, 2012, BIOINFORMATICS, V28, P3150, DOI 10.1093/bioinformatics/bts565eng
hcfmusp.relation.referenceGardebrecht A, 2012, ISME J, V6, P766, DOI 10.1038/ismej.2011.137eng
hcfmusp.relation.referenceGhosh W, 2009, FEMS MICROBIOL REV, V33, P999, DOI 10.1111/j.1574-6976.2009.00187.xeng
hcfmusp.relation.referenceGOOD IJ, 1953, BIOMETRIKA, V40, P237, DOI 10.2307/2333344eng
hcfmusp.relation.referenceGrabherr MG, 2011, NAT BIOTECHNOL, V29, P644, DOI 10.1038/nbt.1883eng
hcfmusp.relation.referenceGreen-Garcia AM, 2008, THESISeng
hcfmusp.relation.referenceGreen-Garcia AM, 2012, ESTUAR COAST SHELF S, V112, P153, DOI 10.1016/j.ecss.2012.07.010eng
hcfmusp.relation.referenceGros O, 1996, APPL ENVIRON MICROB, V62, P2324eng
hcfmusp.relation.referenceGros O, 2003, APPL ENVIRON MICROB, V69, P6264, DOI 10.1128/AEM.69.10.6264-6267.2003eng
hcfmusp.relation.referenceGros O, 1999, INVERTEBR REPROD DEV, V36, P93, DOI 10.1080/07924259.1999.9652683eng
hcfmusp.relation.referenceGros O, 1998, FEMS MICROBIOL LETT, V160, P257, DOI 10.1111/j.1574-6968.1998.tb12920.xeng
hcfmusp.relation.referenceGuo CM, 2012, TOXICON, V60, P302, DOI 10.1016/j.toxicon.2012.05.001eng
hcfmusp.relation.referenceHaas BJ, 2013, NAT PROTOC, V8, P1494, DOI 10.1038/nprot.2013.084eng
hcfmusp.relation.referenceHansen AK, 2011, P NATL ACAD SCI USA, V108, P2849, DOI 10.1073/pnas.1013465108eng
hcfmusp.relation.referenceHarris MA, 2004, NUCLEIC ACIDS RES, V32, pD258, DOI 10.1093/nar/gkh036eng
hcfmusp.relation.referenceHENTSCHEL U, 1995, APPL ENVIRON MICROB, V61, P1630eng
hcfmusp.relation.referenceHiggs ND, 2016, CURR BIOL, V26, P3393, DOI 10.1016/j.cub.2016.10.034eng
hcfmusp.relation.referenceIkuta T, 2016, ISME J, V10, P990, DOI 10.1038/ismej.2015.176eng
hcfmusp.relation.referenceJensen SI, 2005, MAR ECOL PROG SER, V293, P49, DOI 10.3354/meps293049eng
hcfmusp.relation.referenceJensen S, 2010, FEMS MICROBIOL ECOL, V74, P523, DOI 10.1111/j.1574-6941.2010.00981.xeng
hcfmusp.relation.referenceJohnson MA, 2002, B MAR SCI, V71, P1343eng
hcfmusp.relation.referenceKang DWD, 2015, PEERJ, V3, DOI 10.7717/peerj.1165eng
hcfmusp.relation.referenceKatharios P, 2015, SCI REP-UK, V5, DOI 10.1038/srep17609eng
hcfmusp.relation.referenceKnight JM, 2013, ESTUAR COAST SHELF S, V131, P290, DOI 10.1016/j.ecss.2013.06.024eng
hcfmusp.relation.referenceKonig S, 2017, NAT MICROBIOL, V2, DOI 10.1038/nmicrobiol.2016.193eng
hcfmusp.relation.referenceKonstantinidis KT, 2014, MICROBE, V9, P111, DOI [10.1128/microbe.9.111.1, DOI 10.1128/MICR0BE.9.111.1]eng
hcfmusp.relation.referenceKopylova E, 2012, BIOINFORMATICS, V28, P3211, DOI 10.1093/bioinformatics/bts611eng
hcfmusp.relation.referenceKRAUS DW, 1990, J BIOL CHEM, V265, P16043eng
hcfmusp.relation.referenceLangmead B, 2012, NAT METHODS, V9, P357, DOI [10.1038/NMETH.1923, 10.1038/nmeth.1923]eng
hcfmusp.relation.referenceLee J, 2012, INT J SYST EVOL MICR, V62, P2865, DOI 10.1099/ijs.0.038422-0eng
hcfmusp.relation.referenceLi B, 2010, BIOINFORMATICS, V26, P493, DOI 10.1093/bioinformatics/btp692eng
hcfmusp.relation.referenceLi H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324eng
hcfmusp.relation.referenceLiberge M, 2001, MAR BIOL, V139, P401, DOI 10.1007/s002270000526eng
hcfmusp.relation.referenceLILJEDAHL L, 1992, J PALEONTOL, V66, P206, DOI 10.1017/S0022336000033722eng
hcfmusp.relation.referenceLouie TS, 2016, STAND GENOMIC SCI, V11, DOI 10.1186/s40793-016-0191-5eng
hcfmusp.relation.referenceMarie B, 2011, J MOL EVOL, V72, P531, DOI 10.1007/s00239-011-9451-6eng
hcfmusp.relation.referenceMarkert S, 2007, SCIENCE, V315, P247, DOI 10.1126/science.1132913eng
hcfmusp.relation.referenceMarkert S, 2011, PROTEOMICS, V11, P3106, DOI 10.1002/pmic.201100059eng
hcfmusp.relation.referenceMendoza M, 2013, DIS AQUAT ORGAN, V106, P31, DOI 10.3354/dao02636eng
hcfmusp.relation.referenceMeyer E, 2008, RAFFLES B ZOOL, P41eng
hcfmusp.relation.referenceMunoz-Elias EJ, 2005, NAT MED, V11, P638, DOI 10.1038/nm1252eng
hcfmusp.relation.referenceMunoz-Elias EJ, 2006, MOL MICROBIOL, V60, P1109, DOI 10.1111/j.1365-2958.2006.05155.xeng
hcfmusp.relation.referenceNakagawa S, 2014, ISME J, V8, P40, DOI 10.1038/ismej.2013.131eng
hcfmusp.relation.referenceNguyen NP, 2016, NPJ BIOFILMS MICROBI, V2, DOI 10.1038/npjbiofilms.2016.4eng
hcfmusp.relation.referenceNarasingarao P, 2006, SYST APPL MICROBIOL, V29, P382, DOI 10.1016/j.syapm.2005.12.011eng
hcfmusp.relation.referenceNeave MJ, 2017, SCI REP-UK, V7, DOI 10.1038/srep40579eng
hcfmusp.relation.referenceNeave MJ, 2017, ISME J, V11, P186, DOI 10.1038/ismej.2016.95eng
hcfmusp.relation.referenceNeave MJ, 2016, APPL MICROBIOL BIOT, V100, P8315, DOI 10.1007/s00253-016-7777-0eng
hcfmusp.relation.referenceParks DH, 2015, GENOME RES, V25, P1043, DOI 10.1101/gr.186072.114eng
hcfmusp.relation.referencePeng Y, 2012, BIOINFORMATICS, V28, P1420, DOI 10.1093/bioinformatics/bts174eng
hcfmusp.relation.referencePerez M, 2016, APPL ENVIRON MICROB, V82, P5197, DOI 10.1128/AEM.00953-16eng
hcfmusp.relation.referencePetersen JM, 2017, NAT MICROBIOL, V2, DOI 10.1038/nmicrobiol.2016.195eng
hcfmusp.relation.referencePitcher RS, 2004, BBA-BIOENERGETICS, V1655, P388, DOI 10.1016/j.bbabio.2003.09.017eng
hcfmusp.relation.referencePonnudurai R, 2017, ISME J, V11, P463, DOI 10.1038/ismej.2016.124eng
hcfmusp.relation.referenceQuast C, 2013, NUCLEIC ACIDS RES, V41, pD590, DOI 10.1093/nar/gks1219eng
hcfmusp.relation.referenceRader BA, 2012, BIOL BULL-US, V223, P103, DOI 10.1086/BBLv223n1p103eng
hcfmusp.relation.referenceRaina JB, 2018, BIOL OPEN, V7, DOI 10.1242/bio.032524eng
hcfmusp.relation.referenceREAD KRH, 1965, COMP BIOCHEM PHYSIOL, V15, P137eng
hcfmusp.relation.referenceReynolds LK, 2007, ESTUAR COAST, V30, P482, DOI 10.1007/BF02819394eng
hcfmusp.relation.referenceRizzi M, 1996, J MOL BIOL, V258, P1, DOI 10.1006/jmbi.1996.0228eng
hcfmusp.relation.referenceRobinson MD, 2010, GENOME BIOL, V11, DOI 10.1186/gb-2010-11-3-r25eng
hcfmusp.relation.referenceRobinson MD, 2010, BIOINFORMATICS, V26, P139, DOI 10.1093/bioinformatics/btp616eng
hcfmusp.relation.referenceRoeselers G, 2010, STAND GENOMIC SCI, V3, P163, DOI 10.4056/sigs.1103048eng
hcfmusp.relation.referenceRuehland C, 2008, ENVIRON MICROBIOL, V10, P3404, DOI 10.1111/j.1462-2920.2008.01728.xeng
hcfmusp.relation.referenceSchloss PD, 2009, APPL ENVIRON MICROB, V75, P7537, DOI 10.1128/AEM.01541-09eng
hcfmusp.relation.referenceSchreiber L, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.01042eng
hcfmusp.relation.referenceShuman KE, 2016, FEMS MICROBIOL LETT, V363, DOI 10.1093/femsle/fnw100eng
hcfmusp.relation.referenceSimao FA, 2015, BIOINFORMATICS, V31, P3210, DOI 10.1093/bioinformatics/btv351eng
hcfmusp.relation.referenceSoto William, 2014, Front Microbiol, V5, P593, DOI 10.3389/fmicb.2014.00593eng
hcfmusp.relation.referenceStewart FJ, 2011, FRONT MICROBIOL, V2, DOI 10.3389/fmicb.2011.00134eng
hcfmusp.relation.referenceSun YY, 2016, FRONT MICROBIOL, V7, DOI [10.3389/fmicb.2010.01320, 10.3389/fmicb.2016.01320]eng
hcfmusp.relation.referenceSun Y, 2010, INFECT IMMUN, V78, P4667, DOI 10.1128/IAI.00546-10eng
hcfmusp.relation.referenceSurger MJ, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00374eng
hcfmusp.relation.referenceTabita FR, 2008, J EXP BOT, V59, P1515, DOI 10.1093/jxb/erm361eng
hcfmusp.relation.referenceTakamatsu N, 1995, FEBS LETT, V377, P373, DOI 10.1016/0014-5793(95)01375-Xeng
hcfmusp.relation.referenceTaylor JD, 2000, GEOL SOC SPEC PUBL, V177, P207, DOI 10.1144/GSL.SP.2000.177.01.12eng
hcfmusp.relation.referenceTaylor JD, 2010, TOP GEOBIOL, V33, P107, DOI 10.1007/978-90-481-9572-5_5eng
hcfmusp.relation.referenceToshchakov SV, 2017, MAR GENOM, V36, P41, DOI 10.1016/j.margen.2017.07.005eng
hcfmusp.relation.referencevan der Heide T, 2012, SCIENCE, V336, P1432, DOI 10.1126/science.1219973eng
hcfmusp.relation.referenceWilliams ST, 2004, J MOLLUS STUD, V70, P187, DOI 10.1093/mollus/70.2.187eng
hcfmusp.relation.referenceWITTENBERG JB, 1990, ANNU REV BIOPHYS BIO, V19, P217eng
hcfmusp.relation.referenceWoyke T, 2006, NATURE, V443, P950, DOI 10.1038/nature05192eng
hcfmusp.relation.referenceZielinski FU, 2009, ENVIRON MICROBIOL, V11, P1150, DOI 10.1111/j.1462-2920.2008.01847.xeng
hcfmusp.scopus.lastupdate2024-05-10
relation.isAuthorOfPublicationc78366b8-aff1-4e0f-81ba-4c44c2fadb89
relation.isAuthorOfPublication.latestForDiscoveryc78366b8-aff1-4e0f-81ba-4c44c2fadb89
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
art_LIM_Taxonomic_and_functional_heterogeneity_of_the_gill_microbiome_2019.PDF
Tamanho:
3.07 MB
Formato:
Adobe Portable Document Format
Descrição:
publishedVersion (English)