Intracellular peptides in SARS-CoV-2-infected patients

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
CELL PRESS
Autores
MARTUCCI, Luiz Felipe
EICHLER, Rosangela A. S.
SILVA, Renee N. O.
COSTA, Tiago J.
TOSTES, Rita C.
Citação
ISCIENCE, v.26, n.9, article ID 107542, 17p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Intracellular peptides (InPeps) generated by the orchestrated action of the proteasome and intracellular peptidases have biological and pharmacological sig-nificance. Here, human plasma relative concentration of specific InPeps was compared between 175 patients infected with severe acute respiratory syn-drome coronavirus 2 (SARS-CoV-2), and 45 SARS-CoV-2 non-infected patients; 2,466 unique peptides were identified, of which 67% were InPeps. The results re-vealed differences of a specific group of peptides in human plasma comparing non-infected individuals to patients infected by SARS-CoV-2, following the re-sults of the semi-quantitative analyses by isotope-labeled electrospray mass spectrometry. The protein-protein interactions networks enriched pathways, drawn by genes encoding the proteins from which the peptides originated, re-vealed the presence of the coronavirus disease/COVID-19 network solely in the group of patients fatally infected by SARS-CoV-2. Thus, modulation of the rela-tive plasma levels of specific InPeps could be employed as a predictive tool for disease outcome.
Palavras-chave
Referências
  1. Ablamunits V, 2022, MOL BIOL REP, V49, P2303, DOI 10.1007/s11033-022-07166-x
  2. Aman S, 2021, CELL DEATH DISCOV, V7, DOI 10.1038/s41420-021-00733-4
  3. Arguinchona LM, 2023, FRONT CARDIOVASC MED, V9, DOI 10.3389/fcvm.2022.1054690
  4. Bodenhofer U, 2015, BIOINFORMATICS, V31, P3997, DOI 10.1093/bioinformatics/btv494
  5. Buyanova M, 2022, TRENDS PHARMACOL SCI, V43, P234, DOI 10.1016/j.tips.2021.11.008
  6. Calculli A, 2023, EUR J NEUROL, V30, P1272, DOI 10.1111/ene.15732
  7. Captur G, 2022, EBIOMEDICINE, V85, DOI 10.1016/j.ebiom.2022.104293
  8. Carvacho I, 2021, CLIN TRANSL IMMUNOL, V10, DOI 10.1002/cti2.1240
  9. Castro LM, 2010, AAPS J, V12, P608, DOI 10.1208/s12248-010-9224-y
  10. Chen L, 2021, BIOMED RES INT, V2021, DOI 10.1155/2021/9939134
  11. Dasgupta S, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0163312
  12. Davey NE, 2016, MOL CELL, V64, P12, DOI 10.1016/j.molcel.2016.09.006
  13. Davey NE, 2012, MOL BIOSYST, V8, P268, DOI 10.1039/c1mb05231d
  14. de Araujo CB, 2019, BIOMOLECULES, V9, DOI 10.3390/biom9040150
  15. de Araujo CB, 2014, J BIOL CHEM, V289, P16711, DOI 10.1074/jbc.M113.537118
  16. Deutsch EW, 2020, NUCLEIC ACIDS RES, V48, pD1145, DOI 10.1093/nar/gkz984
  17. Doyle SE, 2002, IMMUNITY, V17, P251, DOI 10.1016/S1074-7613(02)00390-4
  18. Drexler H, 1999, J MOL CELL CARDIOL, V31, P51, DOI 10.1006/jmcc.1998.0843
  19. Dufresne J, 2018, CLIN PROTEOM, V15, DOI 10.1186/s12014-018-9211-3
  20. Ferro E.S., 2014, EUPA OPEN PROTEOMICS, V3, P143, DOI [10.1016/j.euprot.2014.02.009, DOI 10.1016/J.EUPROT.2014.02.009]
  21. Finkel Y, 2021, NATURE, V594, P240, DOI 10.1038/s41586-021-03610-3
  22. Finkel Yaara, 2021, Nature, V589, P125, DOI 10.1038/s41586-020-2739-1
  23. Fricker LD, 2020, ANNU REV PHARMACOL, V60, P457, DOI 10.1146/annurev-pharmtox-010919-023603
  24. GANDO S, 1994, THROMB RES, V75, P195, DOI 10.1016/0049-3848(94)90068-X
  25. Gatto L, 2012, BIOINFORMATICS, V28, P288, DOI 10.1093/bioinformatics/btr645
  26. Gelman JS, 2010, J NEUROCHEM, V113, P871, DOI 10.1111/j.1471-4159.2010.06653.x
  27. Gelzo M, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-021-04677-8
  28. Gewehr M.C., 2022, PEPTIDE PEPTIDOMIMET, P255
  29. Gewehr MCF, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10020321
  30. Goeman JJ, 2007, BIOINFORMATICS, V23, P980, DOI 10.1093/bioinformatics/btm051
  31. Hornig B, 1997, CIRCULATION, V95, P1115
  32. Huang LL, 2021, SIGNAL TRANSDUCT TAR, V6, DOI 10.1038/s41392-021-00526-2
  33. Huang MW, 2023, SIGNAL TRANSDUCT TAR, V8, DOI 10.1038/s41392-023-01348-0
  34. Huang Y, 2020, ACTA PHARMACOL SIN, V41, P1141, DOI 10.1038/s41401-020-0485-4
  35. Javitt A, 2023, NAT CANCER, V4, P629, DOI 10.1038/s43018-023-00557-4
  36. Kastin A., 2013, HDB BIOL ACTIVE PEPT
  37. Kircheis R, 2020, Arxiv, DOI [arXiv:2008.10404, DOI 10.48550/ARXIV.2008.10404, 10.48550/arXiv.2008.10404]
  38. Klann K, 2020, MOL CELL, V80, P164, DOI 10.1016/j.molcel.2020.08.006
  39. Kovács IA, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09177-y
  40. Krochmal M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-44129-y
  41. Kruse T, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-26498-z
  42. Kumar M, 2022, NUCLEIC ACIDS RES, V50, pD497, DOI 10.1093/nar/gkab975
  43. Lau JL, 2018, BIOORGAN MED CHEM, V26, P2700, DOI 10.1016/j.bmc.2017.06.052
  44. Leta V, 2022, INT REV NEUROBIOL, P63, DOI 10.1016/bs.irn.2022.04.004
  45. Li WH, 2005, EMBO J, V24, P1634, DOI 10.1038/sj.emboj.7600640
  46. Liu T, 2017, SIGNAL TRANSDUCT TAR, V2, DOI 10.1038/sigtrans.2017.23
  47. Lo Cascio E, 2021, COMPUT STRUCT BIOTEC, V19, P1838, DOI 10.1016/j.csbj.2021.03.014
  48. Luan JW, 2020, J INFECTION, V81, P337, DOI 10.1016/j.jinf.2020.03.046
  49. Magalhaes P, 2018, PROTEOM CLIN APPL, V12, DOI 10.1002/prca.201700163
  50. Manne BK, 2020, BLOOD, V136, P1317, DOI 10.1182/blood.2020007214
  51. Mao L, 2020, JAMA NEUROL, V77, P683, DOI 10.1001/jamaneurol.2020.1127
  52. Marshall JC, 2020, LANCET INFECT DIS, V20, pE192, DOI 10.1016/S1473-3099(20)30483-7
  53. Téllez GM, 2020, REUMATOL CLIN, V16, P455, DOI 10.1016/j.reuma.2018.11.006
  54. Mészáros B, 2021, SCI SIGNAL, V14, DOI 10.1126/scisignal.abd0334
  55. Monte ERC, 2017, J PROTEOMICS, V151, P74, DOI 10.1016/j.jprot.2016.08.003
  56. Moss P, 2022, NAT IMMUNOL, V23, P186, DOI 10.1038/s41590-021-01122-w
  57. Nader D, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14050891
  58. Palanski BA, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28353-1
  59. Pandey S, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22168828
  60. Parker BL, 2017, MOL CELL PROTEOMICS, V16, P2055, DOI 10.1074/mcp.RA117.000020
  61. Pawson T, 1997, SCIENCE, V278, P2075, DOI 10.1126/science.278.5346.2075
  62. Pawson T, 2000, GENE DEV, V14, P1027
  63. Perez-Riverol Y, 2019, NUCLEIC ACIDS RES, V47, pD442, DOI 10.1093/nar/gky1106
  64. Philippe GJB, 2021, DRUG DISCOV TODAY, V26, P1521, DOI 10.1016/j.drudis.2021.01.022
  65. Pomplun S, 2021, ACS CENTRAL SCI, V7, P156, DOI 10.1021/acscentsci.0c01309
  66. Ren XW, 2021, CELL, V184, P1895, DOI 10.1016/j.cell.2021.01.053
  67. Repetto O, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19030759
  68. Russo LC, 2017, J PROTEOMICS, V151, P24, DOI 10.1016/j.jprot.2016.06.028
  69. Rutherfurd KJ, 2000, BRIT J NUTR, V84, pS99
  70. Menezes MCS, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-94624-4
  71. Shimaoka M, 2003, NAT REV DRUG DISCOV, V2, P703, DOI 10.1038/nrd1174
  72. Shoari A, 2021, PHARMACEUTICS, V13, DOI 10.3390/pharmaceutics13091391
  73. Staessen JA, 2022, LANCET DIGIT HEALTH, V4, pE727, DOI 10.1016/S2589-7500(22)00150-9
  74. Ueland T, 2020, J INFECTION, V81, pE41, DOI 10.1016/j.jinf.2020.06.061
  75. Ulgen E, 2019, FRONT GENET, V10, DOI 10.3389/fgene.2019.00858
  76. Vidal M, 2011, CELL, V144, P986, DOI 10.1016/j.cell.2011.02.016
  77. Wagers SS, 2004, J CLIN INVEST, V114, P104, DOI 10.1172/JCI200419569
  78. Wakabayashi I, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147297
  79. Weber RJM, 2012, BIOINFORMATICS, V28, P2856, DOI 10.1093/bioinformatics/bts527
  80. Wendt R, 2021, ECLINICALMEDICINE, V36, DOI 10.1016/j.eclinm.2021.100883
  81. World Health Organization, 2020, CLIN MAN COVID 19 IN
  82. Wrapp D, 2020, SCIENCE, V367, P1260, DOI [10.1101/2020.02.11.944462, 10.1126/science.abb2507]
  83. Yang A.C., 2020, BIORXIV, DOI [10.1101/2020.10.22.349415, DOI 10.1101/2020.10.22.349415]