Can increased expression of miR-Let-7c reduce the transition potential of high-grade urothelial carcinoma?

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Citação
MOLECULAR BIOLOGY REPORTS, v.48, n.12, p.7947-7952, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Bladder cancer is the leading transitional cell carcinoma affecting men and women with high morbidity and mortality rates, justifying the need to develop new molecular target therapies using microRNAs. This study aimed to evaluate the behavior of the T24 cell line after transfection with miR-Let-7c precursor mimic through invasion, migration, apoptosis, and cell cycle assays. Methods and results T24 cell was transfected with the Let-7c mimic and its respective control and evaluated after 24 h. The expression levels of miR-Let-7c were analyzed by qPCR. We performed wound healing, Matrigel and flow cytometry, apoptosis, and cell cycle assays to determine its effect on cellular processes. Cells transfected with miR-Let-7c showed increased apoptosis rates (p = 0.019), decreased migration 24 h (p = 0.031) and 48 h (p = 0.0006), invasion potential (p = 0.0007), and cell proliferation (p = 0.002). Conclusions Our results demonstrate that miR-Let-7c can act in different pathways of the carcinogenic cellular processes of muscle-invasive urothelial carcinoma cells, inhibiting cell proliferation and increasing apoptosis levels, consequently limiting their invasion potential. However, further studies should be carried out better to elucidate this microRNA's role in high-grade urothelial carcinomas and unveil which targets this microRNA may present, which are intrinsically related to the cancer survival pathways.
Palavras-chave
Let-7c, Urothelial carcinoma, Bladder cancer, Apoptosis, Proliferation
Referências
  1. [Anonymous], 2018, CANC BEXIGA
  2. Barh D., 2008, CANC THERAPY, V6, P969
  3. Boubaker NS, 2020, CANCER BIOMARK, V27, P63, DOI 10.3233/CBM-190483
  4. Catto JWF, 2011, EUR UROL, V59, P671, DOI 10.1016/j.eururo.2011.01.044
  5. Amorim GLCD, 2011, EINSTEIN-SAO PAULO, V9, P95, DOI [10.1590/S1679-45082011RB1593, 10.1590/s1679-45082011rb1593]
  6. Chiu SC, 2014, CELL TRANSPLANT, V23, P459, DOI 10.3727/096368914X678418
  7. Dip N, 2012, J UROLOGY, V188, P1951, DOI 10.1016/j.juro.2012.07.004
  8. Esquela-Kerscher A, 2008, CELL CYCLE, V7, P759, DOI 10.4161/cc.7.6.5834
  9. Fonseca CEC, 2008, REV ASSOC MED BRAS, V54, P95, DOI [10.1590/S0104-42302008000200001, DOI 10.1590/S0104-42302008000200001]
  10. Garzon R, 2009, ANNU REV MED, V60, P167, DOI 10.1146/annurev.med.59.053006.104707
  11. Gaspar N, 2012, ANALISE EXPRESSAO MI, DOI [10.11606/T.5.2012.tde-10102012-100047, DOI 10.11606/T.5.2012.TDE-10102012-100047]
  12. Haddick L, 2020, PHARMACEUTICS, V12, DOI 10.3390/pharmaceutics12060505
  13. Hosseinahli N, 2018, J CELL PHYSIOL, V233, P5574, DOI 10.1002/jcp.26514
  14. Iscaife A, 2018, APOPTOSIS, V23, P388, DOI 10.1007/s10495-018-1461-z
  15. Itesako T, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0084311
  16. Lu J, 2005, NATURE, V435, P834, DOI 10.1038/nature03702
  17. Ramuta TZ, 2020, FRONT BIOENG BIOTECH, V8, DOI 10.3389/fbioe.2020.554530
  18. Reis ST, 2013, CLINICS, V68, P652, DOI 10.6061/clinics/2013(05)12
  19. Riscal R, 2019, MOL CELL, V76, P220, DOI 10.1016/j.molcel.2019.09.008
  20. Sadio M, 2018, J INNATE IMMUN, V10, P14, DOI 10.1159/000480248
  21. Spagnuolo M, 2020, J EXP CLIN CANC RES, V39, DOI 10.1186/s13046-020-01550-w
  22. Vinall Ruth L, 2016, Genes Cancer, V7, P86, DOI 10.18632/genesandcancer.103
  23. Zhu XM, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0124266