Influenza A/Singapore (H3N2) component vaccine in systemic lupus erythematosus: A distinct pattern of immunogenicity

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS LTD
Citação
LUPUS, v.30, n.12, p.1915-1922, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction Influenza A (H3N2) virus is the most important cause of seasonal influenza morbidity and mortality in the last 50 years, surpassing the impact of H1N1. Data assessing immunogenicity and safety of this virus component are lacking in systemic lupus erythematosus (SLE) and restricted to small reports with other H3N2 strains. Objective This study aims to evaluate short-term immunogenicity and safety of influenza A/Singapore (H3N2) vaccine in SLE. Methods 81 consecutive SLE patients and 81 age- and sex-matched healthy controls (HC) were vaccinated with the influenza A/Singapore/INFIMH-16-0019/2016(H3N2)-like virus. Seroprotection (SP) and seroconversion (SC) rates, geometric mean titers(GMT), and factor increase in GMT(FI-GMT) and adverse events were assessed before and 4 weeks post-vaccination. Disease activity and therapies were also evaluated. Results Before immunization, SLE and HC groups had high SP rates (89% vs 77%, p = 0.061) and elevated GMT titer with higher levels in SLE (129.1(104.1-154.1) vs 54.8(45.0-64.6), p < 0.001). Frequency of two previous years' influenza vaccination was high and comparable in SLE and HC (89% vs 90%, p = 1.000). Four weeks post-vaccination, median GMT increased for both groups and remained higher in SLE compared to HC (239.9(189.5-290.4) vs 94.5(72.6-116.4), p < 0.0001) with a comparable FI-GMT (2.3(1.8-2.9) vs 1.9(1.5-2.3), p = 0.051). SC rates were low and comparable for both groups (16% vs 11%, respectively, p = 0.974). Disease activity scores remained stable throughout the study (p = 1.000) and severe adverse events were not identified. Conclusion Influenza A/Singapore (H3N2) vaccine has an adequate safety profile. The distinct immunogenicity pattern from other influenza A components characterized by a remarkably high pre- and post-vaccination SP rate and high GMT levels may be associated with previous influenza A vaccination. (, NCT03540823).
Palavras-chave
Systemic lupus erythematosus, influenza, vaccine, safety, immunogenicity
Referências
  1. Abu-Shakra M, 2002, J RHEUMATOL, V29, P2555
  2. Agmon-Levin N, 2009, ISR MED ASSOC J, V11, P183
  3. Beigel JH, 2009, J INFECT DIS, V200, P501, DOI 10.1086/599992
  4. Belongia EA, 2019, CLIN INFECT DIS, V69, P1817, DOI 10.1093/cid/ciz411
  5. Belongia EA, 2016, LANCET INFECT DIS, V16, P942, DOI 10.1016/S1473-3099(16)00129-8
  6. Bernatsky S, 2006, ARTHRITIS RHEUM-US, V54, P2550, DOI 10.1002/art.21955
  7. Borba EF, 2012, RHEUMATOLOGY, V51, P1061, DOI 10.1093/rheumatology/ker427
  8. Budd AP, 2018, MMWR-MORBID MORTAL W, V67, P169, DOI 10.15585/mmwr.mm6706a1
  9. Chiu SS, 2018, J INFECT DIS, V217, P1365, DOI 10.1093/infdis/jiy027
  10. Del Porto F, 2006, VACCINE, V24, P3217, DOI 10.1016/j.vaccine.2006.01.028
  11. Fessler BJ, 2002, BEST PRACT RES CL RH, V16, P281, DOI 10.1053/berh.2001.0226
  12. Flannery B, 2020, J INFECT DIS, V221, P8, DOI 10.1093/infdis/jiz543
  13. Furer V, 2020, ANN RHEUM DIS, V79, P39, DOI 10.1136/annrheumdis-2019-215882
  14. Gladman DD, 2002, J RHEUMATOL, V29, P288
  15. Guimaraes LE, 2015, PHARMACOL RES, V100, P190, DOI 10.1016/j.phrs.2015.08.003
  16. Henry C, 2019, CELL HOST MICROBE, V25, P357, DOI 10.1016/j.chom.2019.01.002
  17. Holvast A, 2006, ANN RHEUM DIS, V65, P913, DOI 10.1136/ard.2005.043943
  18. Holvast B, 2007, AUTOIMMUN REV, V6, P300, DOI 10.1016/j.autrev.2006.09.012
  19. Jester BJ, 2020, AM J PUBLIC HEALTH, V110, P669, DOI 10.2105/AJPH.2019.305557
  20. Kawakami C, 2019, EUROSURVEILLANCE, V24, P49, DOI 10.2807/1560-7917.ES.2019.24.6.1800467
  21. Korsun N, 2018, J MED MICROBIOL, V67, P228, DOI 10.1099/jmm.0.000668
  22. Liao ZF, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0147856
  23. Mostafa A, 2018, TRENDS MICROBIOL, V26, P87, DOI 10.1016/j.tim.2017.12.003
  24. Nabeshima S, 2007, J MED VIROL, V79, P320, DOI 10.1002/jmv.20801
  25. Organization WH., 2017, WKLY EPIDEMIOL REC R, V92, P625
  26. Petri M, 2012, ARTHRITIS RHEUM-US, V64, P2677, DOI 10.1002/art.34473
  27. Pietrasik, 2018, INFL SEAS
  28. Freitas ARR, 2018, FRONT IMMUNOL, V8, DOI 10.3389/fimmu.2017.01903
  29. Sa?de BMda, 2014, INF TECN
  30. Secretaria de Vigil?ncia em Sa?de, 2016, INF TECN CAMP NAC VA
  31. Smith DJ, 1999, P NATL ACAD SCI USA, V96, P14001, DOI 10.1073/pnas.96.24.14001
  32. van Assen S, 2011, ANN RHEUM DIS, V70, P414, DOI 10.1136/ard.2010.137216
  33. Vemula SV, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8040096
  34. Vogt D., 2017, JOVE-J VIS EXP, V130, P55833
  35. Wallin L, 2009, ACTA REUMATOL PORT, V34, P498
  36. WARD MM, 1995, ARTHRITIS RHEUM, V38, P1492, DOI 10.1002/art.1780381016
  37. Wiesik-Szewczyk E, 2010, CLIN RHEUMATOL, V29, P605, DOI 10.1007/s10067-010-1373-y
  38. Yang H, 2015, VIROLOGY, V477, P18, DOI 10.1016/j.virol.2014.12.024
  39. Yang JR, 2018, J CLIN VIROL, V99-100, P15, DOI 10.1016/j.jcv.2017.12.012