Cranial Fossa Volume and Morphology Development in Apert Syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
11
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Autores
LU, Xiaona
FORTE, Antonio Jorge
WILSON, Alexander
STEINBACHER, Derek M.
ALPEROVICH, Michael
PERSING, John A.
Citação
PLASTIC AND RECONSTRUCTIVE SURGERY, v.145, n.4, p.790E-802E, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Apert syndrome causes normal or enlarged intracranial volume overall as patients grow. This study aimed to trace the segmental anterior, middle, and posterior cranial fossae volume and structural morphology in these patients, to help discern a more focused and individualized surgical treatment plan for patients with Apert syndrome. Methods: This study included 82 preoperative computed tomographic scans (Apert, n = 32; control, n = 50) divided into five age-related subgroups. The scans were measured using image processing and three-dimensional modeling software. Results: The middle cranial fossa volume was increased and was the earliest change noted. It was increased by 45 percent (p = 0.023) compared with controls before 6 months of age and remained increased into adulthood (161 percent, p = 0.016), with gradually increasing severity. The anterior and posterior cranial fossae volumes also increased, by 35 percent (p = 0.032) and 39 percent (p = 0.007), respectively. Increased depth of cranial fossae contributed most to the increase in volumes of patients with Apert syndrome, with correlation coefficients of 0.799, 0.908, and 0.888 for anterior, middle, and posterior cranial fossa, respectively. The intracranial volume was increased 12 percent (p = 0.098) across the entire test age range (0 to 26 years old), but only had statistical significance during the age range of 6 to 18 years (22 percent, p = 0.001). Conclusions: Malformation of the middle cranial fossa is an early, perhaps the initial, pivotal cranial morphologic change in Apert syndrome. Increased cranial fossae depth is an inherent characteristic of the maldevelopment. Normalization of cranial volume and circumference overall may not achieve a normal skull structure, as it does not correct regional craniocerebral disproportion.
Palavras-chave
Referências
  1. Breakey RWF, 2018, PLAST RECONSTR SURG, V142, p708E, DOI 10.1097/PRS.0000000000004843
  2. Breik O, 2016, CHILD NERV SYST, V32, P833, DOI 10.1007/s00381-016-3036-z
  3. Choi M, 2012, J CRANIOFAC SURG, V23, P455, DOI 10.1097/SCS.0b013e318240ff49
  4. COHEN MM, 1990, AM J MED GENET, V35, P36, DOI 10.1002/ajmg.1320350108
  5. de Jong T, 2012, CHILD NERV SYST, V28, P137, DOI 10.1007/s00381-011-1614-7
  6. Derderian CA, 2015, PLAST RECONSTR SURG, V135, P1665, DOI 10.1097/PRS.0000000000001294
  7. Ertekin T, 2017, INT J MORPHOL, V35, P1465
  8. Fernandes YB, 2016, ARQ NEURO-PSIQUIAT, V74, P405, DOI 10.1590/0004-282X20160041
  9. Florisson JMG, 2011, RADIOLOGY, V261, P534, DOI 10.1148/radiol.11101024
  10. FOK H, 1992, BRIT J PLAST SURG, V45, P394, DOI 10.1016/0007-1226(92)90013-N
  11. Forte AJ, 2014, PLAST RECONSTR SURG, V134, P285, DOI 10.1097/PRS.0000000000000360
  12. Gault D T, 1990, J Craniofac Surg, V1, P1, DOI 10.1097/00001665-199001000-00003
  13. GAULT DT, 1992, PLAST RECONSTR SURG, V90, P377, DOI 10.1097/00006534-199209000-00003
  14. Goodrich JT, 2005, CHILD NERV SYST, V21, P871, DOI 10.1007/s00381-004-1113-1
  15. GOSAIN AK, 1995, PLAST RECONSTR SURG, V95, P284, DOI 10.1097/00006534-199502000-00008
  16. Hevner RF, 2015, SEMIN PERINATOL, V39, P36, DOI 10.1053/j.semperi.2014.10.006
  17. Hill CA, 2013, AM J MED GENET A, V161A, P745, DOI 10.1002/ajmg.a.35805
  18. Hill CA, 2011, CLEFT PALATE-CRAN J, V48, P394, DOI 10.1597/10-051
  19. Iqbal Showkathali, 2017, Asian J Neurosurg, V12, P428, DOI 10.4103/1793-5482.175627
  20. Kanodia G, 2012, J NEUROSCI RURAL PRA, V3, P261, DOI 10.4103/0976-3147.102602
  21. Lee SS, 2010, PLAST RECONSTR SURG, V126, P187, DOI 10.1097/PRS.0b013e3181dab5be
  22. Lu X, 2018, BRIT J ORAL MAX SURG, V56, P864, DOI 10.1016/j.bjoms.2018.09.011
  23. Lu XN, 2019, PRS-GLOB OPEN, V7, DOI 10.1097/GOX.0000000000002158
  24. Lu XN, 2019, J CRANIOFAC SURG, V30, P1671, DOI 10.1097/SCS.0000000000005396
  25. Lu XN, 2018, PRS-GLOB OPEN, V6, DOI 10.1097/GOX.0000000000001963
  26. Lu XN, 2018, J CRANIO MAXILL SURG, V46, P2042, DOI 10.1016/j.jcms.2018.09.026
  27. Marucci DD, 2008, PLAST RECONSTR SURG, V122, P1162, DOI 10.1097/PRS.0b013e31818458f0
  28. Naran S, 2017, J CRANIOFAC SURG, V28, P2030, DOI 10.1097/SCS.0000000000003888
  29. POSNICK JC, 1995, PLAST RECONSTR SURG, V96, P539, DOI 10.1097/00006534-199509000-00004
  30. Rijken BFM, 2015, NEUROSURG FOCUS, V38, DOI 10.3171/2015.2.FOCUS14846
  31. Senda D, 2019, J CRANIOFAC SURG, V30, P23, DOI 10.1097/SCS.0000000000004948
  32. Serlo WS, 2011, CHILD NERV SYST, V27, P627, DOI 10.1007/s00381-010-1353-1
  33. Sgouros S, 2005, CHILD NERV SYST, V21, P861, DOI 10.1007/s00381-004-1112-2
  34. Sgouros S, 1999, J NEUROSURG, V91, P617, DOI 10.3171/jns.1999.91.4.0617
  35. SIDDIQI SN, 1995, NEUROSURGERY, V36, P703, DOI 10.1227/00006123-199504000-00010
  36. Spruijt B, 2016, PLAST RECONSTR SURG, V137, p112E, DOI 10.1097/PRS.0000000000001894
  37. Spruijt B, 2015, PLAST RECONSTR SURG, V136, P331, DOI 10.1097/PRS.0000000000001434
  38. Tamburrini G, 2005, CHILD NERV SYST, V21, P913, DOI 10.1007/s00381-004-1117-x
  39. Timberlake Andrew T, 2018, Hum Genome Var, V5, P14, DOI 10.1038/s41439-018-0014-x
  40. Timberlake AT, 2016, ELIFE, V5, DOI 10.7554/eLife.20125
  41. Tokumaru AM, 1996, AM J NEURORADIOL, V17, P619
  42. Visser R, 2017, PLAST RECONSTR SURG, V139, p477E, DOI 10.1097/PRS.0000000000003016
  43. Yacubian-Fernandes A, 2004, J NEURORADIOLOGY, V31, P116, DOI 10.1016/S0150-9861(04)96978-7