Detection of Early Diffuse Myocardial Fibrosis and Inflammation in Chagas Cardiomyopathy with T1 Mapping and Extracellular Volume

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
RADIOLOGICAL SOC NORTH AMERICA (RSNA)
Citação
RADIOLOGY-CARDIOTHORACIC IMAGING, v.5, n.3, article ID e220112, 10p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: To evaluate myocardial T1 mapping and extracellular volume (ECV) parameters in different stages of Chagas cardiomyopathy and determine whether they are predictive of disease severity and prognosis.Materials and Methods: Prospectively enrolled participants (July 2013 to September 2016) underwent cine and late gadolinium enhancement (LGE) cardiac MRI and T1 mapping with a precontrast (native) or postcontrast modified Look-Locker sequence. The native T1 and ECV values were measured among subgroups that were based on disease severity (indeterminate, Chagas cardiomyopathy with preserved ejection fraction [CCpEF], Chagas cardiomyopathy with midrange ejection fraction [CCmrEF], and Chagas cardiomyopathy with reduced ejection fraction [CCrEF]). Cox proportional hazards regression and the Akaike information criterion were used to determine predictors of major cardiovascular events (cardioverter defibrillator implant, heart transplant, or death).Results: In 107 participants (90 participants with Chagas disease [mean age & PLUSMN; SD, 55 years & PLUSMN; 11; 49 men] and 17 age-and sex matched control participants), the left ventricular (LV) ejection fraction and the extent of focal and diffuse or interstitial fibrosis were correlated with disease severity. Participants with CCmrEF and participants with CCrEF showed significantly higher global native T1 and ECV values than participants in the indeterminate, CCpEF, and control groups (T1: 1072 msec & PLUSMN; 34 and 1073 msec & PLUSMN; 63 vs 1010 msec & PLUSMN; 41, 1005 msec & PLUSMN; 69, and 999 msec & PLUSMN; 46; ECV: 35.5% & PLUSMN; 3.6 and 35.0% & PLUSMN; 5.4 vs 25.3% & PLUSMN; 3.5, 28.2% & PLUSMN; 4.9, and 25.2% & PLUSMN; 2.2; both P < .001). Remote (LGE-negative areas) native T1 and ECV values were also higher (T1: 1056 msec & PLUSMN; 32 and 1071 msec & PLUSMN; 55 vs 1008 msec & PLUSMN; 41, 989 msec & PLUSMN; 96, and 999 msec & PLUSMN; 46; ECV: 30.2% & PLUSMN; 4.7 and 30.8% & PLUSMN; 7.4 vs 25.1% & PLUSMN; 3.5, 25.1% & PLUSMN; 3.7, and 25.0% & PLUSMN; 2.2; both P < .001). Abnormal remote ECV values (>30%) occurred in 12% of participants in the indeterminate group, which increased with disease severity. Nineteen combined outcomes were observed (median follow-up time: 43 months), and a remote native T1 value greater than 1100 msec was independently predictive of combined outcomes (hazard ratio, 12 [95% CI: 4.1, 34.2]; P < .001).Conclusion: Myocardial native T1 and ECV values were correlated with Chagas disease severity and may serve as markers of myocardial involvement in Chagas cardiomyopathy that precede LGE and LV dysfunction.
Palavras-chave
MRI, Cardiac, Heart, Imaging Sequences, Chagas Cardiomyopathy
Referências
  1. Andrade J.P., 2011, Arq. Bras. Cardiol., V97, P01, DOI 10.1590/S0066-782X2011001600001
  2. Bull S, 2013, HEART, V99, P932, DOI 10.1136/heartjnl-2012-303052
  3. Carr JC, 2001, RADIOLOGY, V219, P828, DOI 10.1148/radiology.219.3.r01jn44828
  4. Cerqueira MD, 2002, INT J CARDIOVAS IMAG, V18, P539
  5. Chagas C., 1909, Memorias do Instituto Oswaldo Cruz, V1
  6. Dass S, 2012, CIRC-CARDIOVASC IMAG, V5, P726, DOI 10.1161/CIRCIMAGING.112.976738
  7. Flett AS, 2010, CIRCULATION, V122, P138, DOI 10.1161/CIRCULATIONAHA.109.930636
  8. Fontana M, 2012, J CARDIOVASC MAGN R, V14, DOI 10.1186/1532-429X-14-88
  9. HIGUCHI MD, 1993, CARDIOVASC PATHOL, V2, P101, DOI 10.1016/1054-8807(93)90021-S
  10. Ianni B M, 2001, Arq Bras Cardiol, V77, P59
  11. Karamitsos TD, 2013, JACC-CARDIOVASC IMAG, V6, P488, DOI 10.1016/j.jcmg.2012.11.013
  12. Kellman P, 2012, J CARDIOVASC MAGN R, V14, DOI 10.1186/1532-429X-14-63
  13. Kim RJ, 2000, NEW ENGL J MED, V343, P1445, DOI 10.1056/NEJM200011163432003
  14. Li S, 2022, JACC-CARDIOVASC IMAG, V15, P578, DOI 10.1016/j.jcmg.2021.07.023
  15. Look D. C., 1970, Review of Scientific Instruments, V41, P250, DOI 10.1063/1.1684482
  16. Lurz JA, 2018, JACC-CARDIOVASC IMAG, V11, P38, DOI 10.1016/j.jcmg.2017.01.025
  17. Messroghli DR, 2018, J CARDIOVASC MAGN R, V20, DOI [10.1186/s12968-017-0408-9, 10.1186/s12968-017-0389-8]
  18. Messroghli DR, 2004, MAGN RESON MED, V52, P141, DOI 10.1002/mrm.20110
  19. Miller CA, 2013, CIRC-CARDIOVASC IMAG, V6, P373, DOI 10.1161/CIRCIMAGING.112.000192
  20. Moon JC, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-92
  21. Moravsky G, 2013, JACC-CARDIOVASC IMAG, V6, P587, DOI 10.1016/j.jcmg.2012.09.018
  22. MOSELEY V, 1945, ARCH INTERN MED, V76, P219, DOI 10.1001/archinte.1945.00210340033005
  23. Noya-Rabelo MM, 2018, ARQ BRAS CARDIOL, V110, P124, DOI 10.5935/abc.20180016
  24. Piechnik SK, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-13
  25. Ponikowski P, 2016, EUR HEART J, V37, P2129, DOI 10.1093/eurheartj/ehw128
  26. Puntmann VO, 2016, JACC-CARDIOVASC IMAG, V9, P40, DOI 10.1016/j.jcmg.2015.12.001
  27. Rassi A, 2000, CLIN CARDIOL, V23, P883, DOI 10.1002/clc.4960231205
  28. Rassi A, 2007, CIRCULATION, V115, P1101, DOI 10.1161/CIRCULATIONAHA.106.627265
  29. Rassi Junior A, 1995, Arq Bras Cardiol, V65, P377
  30. Rochitte CE, 2005, J AM COLL CARDIOL, V46, P1553, DOI 10.1016/j.jacc.2005.06.067
  31. Rogers T, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-78
  32. Schulz-Menger J, 2013, J CARDIOVASC MAGN R, V15, DOI 10.1186/1532-429X-15-35
  33. Senra T, 2018, J AM COLL CARDIOL, V72, P2577, DOI 10.1016/j.jacc.2018.08.2195
  34. Pinheiro MVT, 2020, AM J TROP MED HYG, V103, P745, DOI 10.4269/ajtmh.20-0122
  35. Torreao JA, 2015, J CARDIOVASC MAGN R, V17, DOI 10.1186/s12968-015-0200-7
  36. Uellendahl M, 2016, ARQ BRAS CARDIOL, V107, P460, DOI 10.5935/abc.20160168
  37. Vita T, 2019, JACC-CARDIOVASC IMAG, V12, P1659, DOI 10.1016/j.jcmg.2018.08.021
  38. Volpe GJ, 2018, J AM COLL CARDIOL, V72, P2567, DOI 10.1016/j.jacc.2018.09.035
  39. Wong TC, 2012, CIRCULATION, V126, P1206, DOI 10.1161/CIRCULATIONAHA.111.089409