Temporal trends of severity and outcomes of critically ill patients with COVID-19 after the emergence of variants of concern: A comparison of two waves

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.19, n.3, article ID e0299607, 17p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background The emergence of SARS-CoV-2 variants led to subsequent waves of COVID-19 worldwide. In many countries, the second wave of COVID-19 was marked by record deaths, raising the concern that variants associated with that wave might be more deadly. Our aim was to compare outcomes of critically-ill patients of the first two waves of COVID-19. Methods This retrospective cohort included critically-ill patients admitted between March-June 2020 and April-July 2021 in the largest academic hospital in Brazil, which has free-access universal health care system. We compared admission characteristics and hospital outcomes. The main outcome was 60-day survival and we built multivariable Cox model based on a conceptual causal diagram in the format of directed acyclic graph (DAG). Results We included 1583 patients (1315 in the first and 268 in the second wave). Patients in the second wave were younger, had lower severity scores, used prone and non-invasive ventilatory support more often, and fewer patients required mechanical ventilation (70% vs 80%, p<0.001), vasopressors (60 vs 74%, p<0.001), and dialysis (22% vs 37%, p<0.001). Survival was higher in the second wave (HR 0.61, 95%CI 0.50-0.76). In the multivariable model, admission during the second wave, adjusted for age, SAPS3 and vaccination, was not associated with survival (aHR 0.85, 95%CI 0.65-1.12). Conclusions In this cohort study, patients with COVID-19 admitted to the ICU in the second wave were younger and had better prognostic scores. Adjusted survival was similar in the two waves, contrasting with record number of hospitalizations, daily deaths and health system collapse seen across the country in the second wave. Our findings suggest that the combination of the burden of severe cases and factors such as resource allocation and health disparities may have had an impact in the excess mortality found in many countries in the second wave.
Palavras-chave
Referências
  1. Karim SAS, 2021, NEW ENGL J MED, V384, P1866, DOI 10.1056/NEJMc2100362
  2. [Anonymous], 2021, BMJ, V374, pn2091, DOI 10.1136/bmj.n2091
  3. [Anonymous], 2023, Coronavirus disease (COVID-19)
  4. Silva GAE, 2021, CAD SAUDE PUBLICA, V37, DOI [10.1590/0102-311X00039221, 10.1590/0102-311x00039221]
  5. Bastos LSL, 2020, LANCET RESP MED, V9, pE82, DOI 10.1016/S2213-2600(21)00287-3
  6. BRASIL, 2021, Plano Nacional de Operaracionalizacao da Vacinacao contra a COVID-19 [National Plan for the Operationalization of Vaccination against COVID-19], V7th ed., P1
  7. Brizzi A, 2022, NAT MED, V28, P1476, DOI 10.1038/s41591-022-01807-1
  8. Cavalcanti AB, 2020, NEW ENGL J MED, V383, P2041, DOI 10.1056/NEJMoa2019014
  9. Challen R, 2021, BMJ-BRIT MED J, V372, DOI 10.1136/bmj.n579
  10. Core RT., 2022, R: A language and environment for statistical computing
  11. Davies NG, 2021, NATURE, V593, P270, DOI [10.1101/2021.02.01.21250959, 10.1038/s41586-021-03426-1]
  12. Domingo P, 2021, CLIN MICROBIOL INFEC, V27, DOI 10.1016/j.cmi.2021.04.005
  13. Dongelmans DA, 2022, ANN INTENSIVE CARE, V12, DOI 10.1186/s13613-021-00978-3
  14. Falavigna Maicon, 2022, Rev. bras. ter. intensiva, V34, P1, DOI [10.5935/0103-507x.20220001-pt, 10.5935/0103-507X.20220001-pt]
  15. Fan GH, 2021, TRANSBOUND EMERG DIS, V68, P213, DOI 10.1111/tbed.13819
  16. Faria NR, 2021, SCIENCE, V372, P815, DOI [10.1126/science.abh2644, 10.1101/2021.02.26.21252554, 10.1126/science.abh2644Article]
  17. Ferreira JC, 2021, ANN INTENSIVE CARE, V11, DOI 10.1186/s13613-021-00882-w
  18. Frat JP, 2022, JAMA-J AM MED ASSOC, V328, P1212, DOI 10.1001/jama.2022.15613
  19. Fundacao Oswaldo Cruz (Brasil), 2022, COVID-19 Observatory points to the biggest health system collapse in the history of Brazil
  20. Fundacao Oswaldo Cruz (Brasil), 2022, A Rede Genomica
  21. Graf T, 2022, ISCIENCE, V25, DOI 10.1016/j.isci.2022.104156
  22. Guérin C, 2013, NEW ENGL J MED, V368, P2159, DOI 10.1056/NEJMoa1214103
  23. Hahn G, 2021, GENET EPIDEMIOL, V45, P685, DOI 10.1002/gepi.22421
  24. Hallal PC, 2021, NAT MED, V27, P933, DOI 10.1038/s41591-021-01353-2
  25. Harris PA, 2019, J BIOMED INFORM, V95, DOI 10.1016/j.jbi.2019.103208
  26. Harvey WT, 2021, NAT REV MICROBIOL, V19, P409, DOI 10.1038/s41579-021-00573-0
  27. Hoffmann M, 2021, CELL, V184, P2384, DOI 10.1016/j.cell.2021.03.036
  28. de Souza FSH, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-06641-6
  29. Hoogenboom WS, 2021, LANCET REG HEALTH-AM, V3, DOI 10.1016/j.lana.2021.100041
  30. Horby P, 2021, NEW ENGL J MED, V384, P693, DOI [10.1056/NEJMoa2021436, 10.1056/NEJMoa2022926]
  31. Iftimie S, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0248029
  32. Kassambara A., 2021, R package version 0.4.9
  33. Lederer DJ, 2019, ANN AM THORAC SOC, V16, P22, DOI 10.1513/AnnalsATS.201808-564PS
  34. Lin LX, 2021, FRONT PUBLIC HEALTH, V9, DOI 10.3389/fpubh.2021.775224
  35. Lobo SM., 2021, Rev Bras Ter Intensiva, pS0103
  36. Moreno RP, 2005, INTENS CARE MED, V31, P1345, DOI 10.1007/s00134-005-2763-5
  37. Nicolete VC, 2022, EMERG INFECT DIS, V28, P709, DOI 10.3201/eid2803.211993
  38. Oliveira EA, 2022, J PEDIATR-US, V244, P178, DOI 10.1016/j.jpeds.2022.01.001
  39. Paredes MI, 2022, CLIN INFECT DIS, V75, pE536, DOI 10.1093/cid/ciac279
  40. Perkins GD, 2022, JAMA-J AM MED ASSOC, V327, P546, DOI 10.1001/jama.2022.0028
  41. Lázaro APP, 2022, T ROY SOC TROP MED H, V116, P1054, DOI 10.1093/trstmh/trac046
  42. Prete CA, 2022, ELIFE, V11, DOI 10.7554/eLife.78233
  43. Ranzani OT, 2021, LANCET RESP MED, V9, P407, DOI 10.1016/S2213-2600(20)30560-9
  44. Freitas ARR, 2021, LANCET REG HEALTH-AM, V1, DOI 10.1016/j.lana.2021.100021
  45. da Silva SJR, 2021, ONE HEALTH-AMSTERDAM, V13, DOI 10.1016/j.onehlt.2021.100287
  46. Salyer SJ, 2021, LANCET, V397, P1265, DOI 10.1016/S0140-6736(21)00632-2
  47. Santos RS, 2022, IJID REG, V3, P189, DOI 10.1016/j.ijregi.2022.04.002
  48. Souza WM, 2021, LANCET MICROBE, V2, pE527, DOI 10.1016/S2666-5247(21)00129-4
  49. Spira B, 2022, CUREUS J MED SCIENCE, V14, DOI 10.7759/cureus.26486
  50. Therneau T.M., 2013, Modeling Survival Data: Extending the Cox Model, DOI [10.1007/978-1-4757-3294-8_3, DOI 10.1007/978-1-4757-3294-8_3, DOI 10.1007/978-1-4757-3294-8]
  51. Therneau Terry M, 2024, CRAN
  52. Tomazini BM, 2020, JAMA-J AM MED ASSOC, V324, P1307, DOI 10.1001/jama.2020.17021
  53. Nonaka CKV, 2021, INT J INFECT DIS, V111, P47, DOI 10.1016/j.ijid.2021.08.003
  54. Vincent JL, 1996, INTENS CARE MED, V22, P707, DOI 10.1007/s001340050156
  55. von Elm E, 2014, INT J SURG, V12, P1495, DOI 10.1016/j.ijsu.2014.07.013
  56. Whittaker C, 2021, LANCET REG HEALTH-AM, V2, DOI 10.1016/j.lana.2021.100064
  57. Winslow RL, 2022, THORAX, V77, P259, DOI 10.1136/thoraxjnl-2021-218035
  58. World Health Organization, 2023, Tracking SARS-CoV-2 variants
  59. Zeiser FA, 2022, LANCET REG HEALTH-AM, V6, DOI 10.1016/j.lana.2021.100107