Evidence for a Founder Effect of SDHB Exon 1 Deletion in Brazilian Patients With Paraganglioma

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ENDOCRINE SOC
Citação
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, v.108, n.8, p.2105-2114, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Context Limited information is available concerning the genetic spectrum of pheochromocytoma and paraganglioma (PPGL) patients in South America. Germline SDHB large deletions are very rare worldwide, but most of the individuals harboring the SDHB exon 1 deletion originated from the Iberian Peninsula. Objective Our aim was to investigate the spectrum of SDHB genetic defects in a large cohort of Brazilian patients with PPGLs. Methods Genetic investigation of 155 index PPGL patients was performed by Sanger DNA sequencing, multiplex ligation-dependent probe amplification, and/or target next-generation sequencing panel. Common ancestrality was investigated by microsatellite genotyping with haplotype reconstruction, and analysis of deletion breakpoint. Results Among 155 index patients, heterozygous germline SDHB pathogenic or likely pathogenic variants were identified in 22 cases (14.2%). The heterozygous SDHB exon 1 complete deletion was the most frequent genetic defect in SDHB, identified in 8 out of 22 (36%) of patients. Haplotype analysis of 5 SDHB flanking microsatellite markers demonstrated a significant difference in haplotype frequencies in a case-control permutation test (P = 0.03). More precisely, 3 closer/informative microsatellites were shared by 6 out of 8 apparently unrelated cases (75%) (SDHB-GATA29A05-D1S2826-D1S2644 | SDHB-186-130-213), which was observed in only 1 chromosome (1/42) without SDHB exon 1 deletion (X-2 = 29.43; P < 0.001). Moreover, all cases with SDHB exon 1 deletion had the same gene breakpoint pattern of a 15 678 bp deletion previously described in the Iberian Peninsula, indicating a common origin. Conclusion The germline heterozygous SDHB exon 1 deletion was the most frequent genetic defect in the Brazilian PPGL cohort. Our findings demonstrated a founder effect for the SDHB exon 1 deletion in Brazilian patients with paragangliomas.
Palavras-chave
pheochromocytoma, paraganglioma, SDHB, founder effect, deletion, genetics
Referências
  1. Aim LB., 2022, J MED GENET, V59, P785
  2. Amar L, 2007, J CLIN ENDOCR METAB, V92, P3822, DOI 10.1210/jc.2007-0709
  3. Ayala-Ramirez M, 2012, J CLIN ENDOCR METAB, V97, P4040, DOI 10.1210/jc.2012-2356
  4. Bourdeau I, 2016, J CLIN ENDOCR METAB, V101, P4710, DOI 10.1210/jc.2016-1665
  5. Cascon A, 2008, J MED GENET, V45, P233, DOI 10.1136/jmg.2007.054965
  6. Cascon A, 2006, GENE CHROMOSOME CANC, V45, P213, DOI 10.1002/gcc.20283
  7. Crona J, 2017, ENDOCR REV, V38, P489, DOI 10.1210/er.2017-00062
  8. Dahia PLM, 2020, ENDOCR-RELAT CANCER, V27, pT41, DOI 10.1530/ERC-19-0435
  9. Fagundes GFC, 2023, J CLIN ENDOCR METAB, V108, P2105, DOI 10.1210/clinem/dgad028
  10. Fagundes GFC, 2022, J ENDOCR SOC, V6, DOI 10.1210/jendso/bvac004
  11. Fishbein L, 2017, ENDOCR-RELAT CANCER, V24, pL51, DOI 10.1530/ERC-17-0086
  12. Fishbein L, 2017, CANCER CELL, V31, P181, DOI 10.1016/j.ccell.2017.01.001
  13. Fowler Anna, 2016, Wellcome Open Res, V1, P20, DOI 10.12688/wellcomeopenres.10069.1
  14. Gimenez-Roqueplo AP, 2013, J CLIN ENDOCR METAB, V98, pE162, DOI 10.1210/jc.2012-2975
  15. Gordon DM, 2022, ENDOCR CONNECT, V11, DOI 10.1530/EC-21-0560
  16. Hadoux J, 2014, INT J CANCER, V135, P2711, DOI 10.1002/ijc.28913
  17. Hensen EF, 2012, CLIN GENET, V81, P284, DOI 10.1111/j.1399-0004.2011.01653.x
  18. Jian XQ, 2014, NUCLEIC ACIDS RES, V42, P13534, DOI 10.1093/nar/gku1206
  19. Lenders JWM, 2020, J HYPERTENS, V38, P1443, DOI 10.1097/HJH.0000000000002438
  20. Lenders JWM, 2014, J CLIN ENDOCR METAB, V99, P1915, DOI 10.1210/jc.2014-1498
  21. Lima J, 2007, J CLIN ENDOCR METAB, V92, P4853, DOI 10.1210/jc.2007-0640
  22. Lodish MB, 2010, ENDOCR-RELAT CANCER, V17, P581, DOI 10.1677/ERC-10-0004
  23. Martins RG, 2013, ENDOCR-RELAT CANCER, V20, pL23, DOI 10.1530/ERC-12-0399
  24. McWhinney SR, 2004, J CLIN ENDOCR METAB, V89, P5694, DOI 10.1210/jc.2004-0769
  25. MILLER SA, 1988, NUCLEIC ACIDS RES, V0016
  26. Neumann HPH, 2019, NEW ENGL J MED, V381, P552, DOI 10.1056/NEJMra1806651
  27. Nolting S, 2022, ENDOCR REV, V43, P199, DOI 10.1210/endrev/bnab019
  28. Petenuci J, 2021, CLIN ENDOCRINOL, V95, P117, DOI 10.1111/cen.14467
  29. Petenuci J, 2021, ENDOCRINE, V72, P586, DOI 10.1007/s12020-020-02594-w
  30. Pitsava G, 2021, FRONT ENDOCRINOL, V12, DOI 10.3389/fendo.2021.680609
  31. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  32. Solis DC, 2009, CLIN GENET, V75, P354, DOI 10.1111/j.1399-0004.2009.01157.x
  33. Tavtigian SV, 2018, GENET MED, V20, P1054, DOI 10.1038/gim.2017.210
  34. Toledo RA, 2017, NAT REV ENDOCRINOL, V13, P233, DOI 10.1038/nrendo.2016.185
  35. Xekouki P, 2019, HORM METAB RES, V51, P419, DOI 10.1055/a-0661-0341
  36. Xekouki P, 2012, J CLIN ENDOCR METAB, V97, pE357, DOI 10.1210/jc.2011-1179