Maternal Exposure to Particulate Air Pollution and Term Birth Weight: A Multi-Country Evaluation of Effect and Heterogeneity

Carregando...
Imagem de Miniatura
Citações na Scopus
339
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
US DEPT HEALTH HUMAN SCIENCES PUBLIC HEALTH SCIENCE
Autores
DADVAND, Payam
PARKER, Jennifer
BELL, Michelle L.
BONZINI, Matteo
BRAUER, Michael
DARROW, Lyndsey A.
GEHRING, Ulrike
GLINIANAIA, Svetlana V.
HA, Eun-hee
Citação
ENVIRONMENTAL HEALTH PERSPECTIVES, v.121, n.3, p.367-373, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND: A growing body of evidence has associated maternal exposure to air pollution with adverse effects on fetal growth; however, the existing literature is inconsistent. OBJECTIVES: We aimed to quantify the association between maternal exposure to particulate air pollution and term birth weight and low birth weight (LBW) across 14 centers from 9 countries, and to explore the influence of site characteristics and exposure assessment methods on between-center heterogeneity in this association. METHODS: Using a common analytical protocol, International Collaboration on Air Pollution and Pregnancy Outcomes (ICAPPO) centers generated effect estimates for term LBW and continuous birth weight associated with PM10 and PM2.5 (particulate matter <= 10 and 2.5 mu m). We used meta-analysis to combine the estimates of effect across centers (similar to 3 million births) and used meta-regression to evaluate the influence of center characteristics and exposure assessment methods on between-center heterogeneity in reported effect estimates. RESULTS: In random-effects meta-analyses, term LBW was positively associated with a 10-mu g/m(3) increase in PM10 [odds ratio (OR) = 1.03; 95% CI: 1.01, 1.05] and PM2.5 (OR = 1.10; 95% CI: 1.03, 1.18) exposure during the entire pregnancy, adjusted for maternal socioeconomic status. A 10-mu g/m(3) increase in PM10 exposure was also negatively associated with term birth weight as a continuous outcome in the fully adjusted random-effects meta-analyses (-8.9 g; 95% CI: -13.2, -4.6 g). Meta-regressions revealed that centers with higher median PM2.5 levels and PM2.5: PM10 ratios, and centers that used a temporal exposure assessment (compared with spatiotemporal), tended to report stronger associations. CONCLUSION: Maternal exposure to particulate pollution was associated with LBW at term across study populations. We detected three site characteristics and aspects of exposure assessment methodology that appeared to contribute to the variation in associations reported by centers.
Palavras-chave
air pollution, fetal growth, heterogeneity, ICAPPO, low birth weight, meta-analysis, meta-regression, multi-center study, particulate matter, pregnancy
Referências
  1. Australian Bureau of Statistics, 2003, CENS POP HOUS SOC IN
  2. Bacchetti P, 2005, AM J EPIDEMIOL, V161, P105, DOI 10.1093/aje/kwi014
  3. Bacchetti P, 2008, BIOMETRICS, V64, P577, DOI 10.1111/j.1541-0420.2008.01004_1.x
  4. Balci MM, 2010, INT J CARDIOL, V144, P110, DOI 10.1016/j.ijcard.2008.12.111
  5. Bell ML, 2008, ENVIRON RES LETT, V3, DOI 10.1088/1748-9326/3/4/044003
  6. Bell ML, 2007, ENVIRON HEALTH PERSP, V115, P1118, DOI 10.1289/ehp.9759
  7. Borenstein M, 2009, INTRO METAANALYSIS
  8. Brauer M, 2008, ENVIRON HEALTH PERSP, V116, P680, DOI 10.1289/ehp.10952
  9. Darrow LA, 2011, ENVIRON HEALTH PERSP, V119, P731, DOI 10.1289/ehp.1002785
  10. DERSIMONIAN R, 1986, CONTROL CLIN TRIALS, V7, P177, DOI 10.1016/0197-2456(86)90046-2
  11. Gehring U, 2011, ENVIRON RES, V111, P125, DOI 10.1016/j.envres.2010.10.004
  12. Gibson AT, 2007, BEST PRACT RES CL OB, V21, P869, DOI 10.1016/j.bpobgyn.2007.03.008
  13. Glinianaia Svetlana V, 2008, BMC Pregnancy Childbirth, V8, P39, DOI 10.1186/1471-2393-8-39
  14. Glinianaia SV, 2004, EPIDEMIOLOGY, V15, P36, DOI 10.1097/01.ede.0000101023.41844.ac
  15. Gouveia N, 2004, J EPIDEMIOL COMMUN H, V58, P11, DOI 10.1136/jech.58.1.11
  16. Ha EH, 2004, J PREV MED PUBLIC HL, V37, P300
  17. Higgins Julian, 2002, J Health Serv Res Policy, V7, P51, DOI 10.1258/1355819021927674
  18. Higgins JPT, 2008, INT J EPIDEMIOL, V37, P1158, DOI 10.1093/ije/dyn204
  19. Jalaludin B, 2007, ENVIRON HEALTH-UK, V6, DOI 10.1186/1476-069X-6-16
  20. Lepeule J, 2010, ENVIRON HEALTH PERSP, V118, P1483, DOI 10.1289/ehp.0901509
  21. Mannes T, 2005, OCCUP ENVIRON MED, V62, P524, DOI 10.1136/oem.2004.014282
  22. MANTEL N, 1959, J NATL CANCER I, V22, P719
  23. Morello-Frosch R, 2010, ENVIRON HEALTH-GLOB, V9, DOI 10.1186/1476-069X-9-44
  24. MUIR D, 1995, ATMOS ENVIRON, V29, P959, DOI 10.1016/1352-2310(94)00370-Z
  25. Parker JD, 2011, ENVIRON HEALTH PERSP, V119, P1023, DOI 10.1289/ehp.1002725
  26. Parker JD, 2008, PAEDIATR PERINAT EP, V22, P214, DOI 10.1111/j.1365-3016.2008.00931.x
  27. Parker JD, 2005, PEDIATRICS, V115, P121, DOI 10.1542/peds.2004-0889
  28. Pesatori AC, 2008, EPIDEMIOLOGY, V19, pS178
  29. Rich DQ, 2009, J EPIDEMIOL COMMUN H, V63, P488, DOI 10.1136/jech.2008.082792
  30. Sapkota A, 2010, AIR QUAL ATMOS HLTH, V5, P369
  31. Slama R, 2009, ENVIRON HEALTH PERSP, V117, P1313, DOI 10.1289/ehp.0800465
  32. Sram RJ, 2005, ENVIRON HEALTH PERSP, V113, P375, DOI 10.1289/ehp.6362
  33. Stillerman KP, 2008, REPROD SCI, V15, P631, DOI 10.1177/1933719108322436
  34. van den Hooven EH, 2009, ENVIRON HEALTH-GLOB, V8, DOI 10.1186/1476-069X-8-59
  35. Viechtbauer W, 2010, RES SYNTHESIS METHOD, V1, P112, DOI 10.1002/JRSM.11
  36. Vrijheid M, 2011, ENVIRON HEALTH PERSP, V119, P598, DOI 10.1289/ehp.1002946
  37. Woodruff TJ, 2009, ENVIRON RES, V109, P311, DOI 10.1016/j.envres.2008.12.012
  38. Woodruff TJ, 2010, INT J ENV RES PUB HE, V7, P2638, DOI 10.3390/ijerph7062638