Classification of Alzheimer's disease and frontotemporal dementia using routine clinical and cognitive measures across multicentric underrepresented samples: A cross sectional observational study

Carregando...
Imagem de Miniatura
Citações na Scopus
24
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
MAITO, Marcelo Adrian
SANTAMARIA-GARCIA, Hernando
MOGUILNER, Sebastian
POSSIN, Katherine L.
GODOY, Maria E.
AVILA-FUNES, Jose Alberto
I, Maria Behrens
BRUSCO, Ignacio L.
BRUNO, Martin A.
CARDONA, Juan F.
Citação
LANCET REGIONAL HEALTH-AMERICAS, v.17, article ID 100387, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Global brain health initiatives call for improving methods for the diagnosis of Alzheimer & rsquo;s disease (AD) and frontotemporal dementia (FTD) in underrepresented populations. However, diagnostic procedures in upper -middle-income countries (UMICs) and lower-middle income countries (LMICs), such as Latin American countries (LAC), face multiple challenges. These include the heterogeneity in diagnostic methods, lack of clinical harmonisation, and limited access to biomarkers. Methods This cross-sectional observational study aimed to identify the best combination of predictors to discriminate between AD and FTD using demographic, clinical and cognitive data among 1794 participants [904 diagnosed with AD, 282 diagnosed with FTD, and 606 healthy controls (HCs)] collected in 11 clinical centres across five LAC (ReDLat cohort). Findings A fully automated computational approach included classical statistical methods, support vector machine procedures, and machine learning techniques (random forest and sequential feature selection procedures). Results demonstrated an accurate classification of patients with AD and FTD and HCs. A machine learning model produced the best values to differentiate AD from FTD patients with an accuracy = 0.91. The top features included social cognition, neuropsychiatric symptoms, executive functioning performance, and cognitive screening; with secondary contributions from age, educational attainment, and sex. Interpretation Results demonstrate that data-driven techniques applied in archival clinical datasets could enhance diagnostic procedures in regions with limited resources. These results also suggest specific fine-grained cognitive and behavioural measures may aid in the diagnosis of AD and FTD in LAC. Moreover, our results highlight an opportunity for harmonisation of clinical tools for dementia diagnosis in the region.
Palavras-chave
Alzheimer?s Disease, Frontotemporal dementia, Underrepresented samples, Machine learning
Referências
  1. Parra MA, 2021, ALZHEIMERS DEMENT, V17, P295, DOI 10.1002/alz.12202
  2. Altman N, 2017, NAT METHODS, V14, P933, DOI 10.1038/nmeth.4438
  3. Amodio DM, 2006, NAT REV NEUROSCI, V7, P268, DOI 10.1038/nrn1884
  4. Arevalo-Rodriguez I, 2015, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD010783.pub2
  5. Baez S, 2017, CURR TOP BEHAV NEURO, V30, P379, DOI 10.1007/7854_2016_443
  6. Baez S, 2014, FRONT AGING NEUROSCI, V6, DOI 10.3389/fnagi.2014.00262
  7. Antor MB, 2021, J HEALTHC ENG, V2021, DOI 10.1155/2021/9917919
  8. Battista P, 2017, BEHAV NEUROL, V2017, DOI 10.1155/2017/1850909
  9. Borroni B, 2008, INT J GERIATR PSYCH, V23, P796, DOI 10.1002/gps.1974
  10. Breiman L., 2001, Machine Learning, V45, P5, DOI 10.1023/A:1010933404324
  11. Breiman L, 2018, RANDOM FORESTS
  12. Cummings JL, 1997, NEUROLOGY, V48, pS10, DOI 10.1212/WNL.48.5_Suppl_6.10S
  13. Custodio N, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00221
  14. Dawson WD, 2020, LANCET NEUROL, V19, P972, DOI 10.1016/S1474-4422(20)30358-6
  15. Donnelly-Kehoe PA, 2019, ALZH DEMENT-DADM, V11, P588, DOI 10.1016/j.dadm.2019.06.002
  16. Dubois B, 2007, LANCET NEUROL, V6, P734, DOI 10.1016/S1474-4422(07)70178-3
  17. Duran-Aniotz C, 2022, ALZHEIMERS DEMENT, V18, P1696, DOI 10.1002/alz.12710
  18. Duran-Aniotz C, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.663407
  19. Eslinger PJ, 2011, J NEUROPSYCH CLIN N, V23, P74, DOI 10.1176/appi.neuropsych.23.1.74
  20. Ferri CP, 2017, PLOS MED, V14, DOI 10.1371/journal.pmed.1002271
  21. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  22. Funkiewiez A, 2012, NEUROPSYCHOLOGY, V26, P81, DOI 10.1037/a0025318
  23. Garcia-Gutierrez F, 2022, INT J GERIATR PSYCH, V37, DOI 10.1002/gps.5667
  24. GBD 2019 Dementia Forecasting Collaborators, 2022, Lancet Public Health, V7, pe105, DOI 10.1016/S2468-2667(21)00249-8
  25. Gleichgerrcht E, 2011, J CLIN EXP NEUROPSYC, V33, P997, DOI 10.1080/13803395.2011.589375
  26. Gorno-Tempini ML, 2011, NEUROLOGY, V76, P1006, DOI 10.1212/WNL.0b013e31821103e6
  27. Grassi M, 2018, J ALZHEIMERS DIS, V61, P1555, DOI 10.3233/JAD-170547
  28. Gregory CA, 1997, INT J GERIATR PSYCH, V12, P375, DOI 10.1002/(SICI)1099-1166(199703)12:3<375::AID-GPS518>3.0.CO;2-#
  29. Gurevich P, 2017, FRONT AGING NEUROSCI, V9, DOI 10.3389/fnagi.2017.00114
  30. Hodges JR, 2018, J ALZHEIMERS DIS, V62, P1467, DOI 10.3233/JAD-171087
  31. Hutchinson AD, 2007, J NEUROL NEUROSUR PS, V78, P917, DOI 10.1136/jnnp.2006.100669
  32. Ibanez A, 2021, FRONT NEUROL, V12, DOI 10.3389/fneur.2021.631722
  33. Ibanez A, 2021, J ALZHEIMERS DIS, V82, pS379, DOI 10.3233/JAD-201384
  34. Ibanez K, 2022, LANCET NEUROL, V21, P234, DOI 10.1016/S1474-4422(21)00462-2
  35. Ismail Z, 2016, ALZHEIMERS DEMENT, V12, P195, DOI 10.1016/j.jalz.2015.05.017
  36. Kharoubi R, 2019, J STAT COMPUT SIM, V89, P1020, DOI 10.1080/00949655.2019.1575382
  37. Kim JP, 2019, NEUROIMAGE-CLIN, P23
  38. Kim R, 2018, J MOV DISORD, V11, P30, DOI 10.14802/jmd.17038
  39. Larose CDLDT, 2015, DATA MINING PREDICTI, V2nd
  40. Livingston G, 2020, LANCET, V396, P413, DOI 10.1016/S0140-6736(20)30367-6
  41. Livingston G, 2017, LANCET, V390, P2673, DOI 10.1016/S0140-6736(17)31363-6
  42. MAHONEY F I, 1965, Md State Med J, V14, P61
  43. Mathuranath PS, 2000, NEUROLOGY
  44. Matias-Guiu JA, 2018, INT PSYCHOGERIATR, V30, P1227, DOI 10.1017/S104161021700268X
  45. Migeot JA, 2022, TRENDS NEUROSCI, V45, P838, DOI 10.1016/j.tins.2022.08.005
  46. Miranda JJ, 2019, NAT MED, V25, P1667, DOI 10.1038/s41591-019-0644-7
  47. Moguilner S, 2022, J NEURAL ENG, V19, DOI 10.1088/1741-2552/ac87d0
  48. Nasreddine ZS, 2005, J AM GERIATR SOC, V53, P695, DOI 10.1111/j.1532-5415.2005.53221.x
  49. Ng KP, 2017, NEUROLOGY, V88, P1814, DOI 10.1212/WNL.0000000000003916
  50. Park LQ, 2015, ALZ DIS ASSOC DIS, V29, P301, DOI 10.1097/WAD.0000000000000081
  51. Parra MA, 2022, ALZHEIMERS DEMENT, DOI 10.1002/alz.12757
  52. Parra MA, 2018, NEUROLOGY, V90, P222, DOI 10.1212/WNL.0000000000004897
  53. Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
  54. PFEFFER RI, 1982, J GERONTOL, V37, P323, DOI 10.1093/geronj/37.3.323
  55. Raschka, 2018, J OPEN SOURCE SOFTW, V3, P638, DOI 10.21105/JOSS.00638
  56. Rascovsky K, 2011, BRAIN, V134, P2456, DOI 10.1093/brain/awr179
  57. Escudero JMS, 2019, FRONT AGING NEUROSCI, V11, DOI 10.3389/fnagi.2019.00176
  58. Santamar-Garcia H, 2016, J ALZHEIMERS DIS, V54, P957, DOI 10.3233/JAD-160501
  59. Scholkopf B, 2018, LEARNING KERNELS
  60. Spooner A, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77220-w
  61. Torralva T, 2009, J INT NEUROPSYCH SOC, V15, P777, DOI 10.1017/S1355617709990415
  62. Weakley A, 2015, J CLIN EXP NEUROPSYC, V37, P899, DOI 10.1080/13803395.2015.1067290