Manual action verbs modulate the grip force of each hand in unimanual or symmetrical bimanual tasks

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
SILVA, Ronaldo Luis da
LABRECQUE, David
HIGGINS, Johanne
FRAK, Victor
Citação
PLOS ONE, v.13, n.2, article ID e0192320, 13p, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Manual action verbs modulate the right-hand grip force in right-handed subjects. However, to our knowledge, no studies demonstrate the ability to accomplish this modulation during bimanual tasks nor describe their effect on left-hand behavior in unimanual and bimanual tasks. Using load cells and word playlists, we evaluated the occurrence of grip force modulation by manual action verbs in unimanual and symmetrical bimanual tasks across the three auditory processing phases. We found a significant grip force increase for all conditions compared to baseline, indicating the occurrence of modulation. When compared to each other, the grip force variation from baseline for the three phases of both hands in the symmetrical bimanual task was not different from the right-hand in the unimanual task. The left-hand grip force showed a lower amplitude for auditory phases 1 and 2 when compared to the other conditions. The right-hand grip force modulation became significant from baseline at 220 ms after the word onset in the unimanual task. This moment occurred earlier for both hands in bimanual task (160 ms for the right-hand and 180 for the left-hand). It occurred later for the left-hand in unimanual task (320 ms). We discuss the hypothesis that Broca's area and Broca's homologue area likely control the left-hand modulation in a unilateral or a bilateral fashion. These results provide new evidence for understanding the linguistic function processing in both hemispheres.
Palavras-chave
Referências
  1. Aramaki Y, 2006, NEUROSCIENCE, V141, P2147, DOI 10.1016/j.neuroscience.2006.05.030
  2. Aramaki Y, 2010, EXP BRAIN RES, V203, P407, DOI 10.1007/s00221-010-2244-0
  3. Aravena P, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050287
  4. Beaule V, 2012, NEURAL PLAST, V2012
  5. Begliomini C, 2008, PLOS ONE, V3, DOI 10.1371/journal.pone.0003388
  6. Bernal B, 2015, FRONT PSYCHOL, V6, DOI 10.3389/fpsyg.2015.00687
  7. Catani M, 2012, CORTEX, V48, P273, DOI 10.1016/j.cortex.2011.12.001
  8. Cattaneo L, 2011, SOC COGN AFFECT NEUR, V6, P301, DOI 10.1093/scan/nsq099
  9. Flinker A, 2015, P NATL ACAD SCI USA, V112, P2871, DOI 10.1073/pnas.1414491112
  10. Frak V, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0009728
  11. Friederici AD, 2002, TRENDS COGN SCI, V6, P78, DOI 10.1016/S1364-6613(00)01839-8
  12. Genon S, 2016, CEREB CORTEX
  13. Haberling IS, 2016, NEUROPSYCHOLOGIA, V80, P17, DOI 10.1016/j.neuropsychologia.2015.11.002
  14. Hickok G, 2007, NAT REV NEUROSCI, V8, P393, DOI 10.1038/nrn2113
  15. Hickok G, 2012, NAT REV NEUROSCI, V13, P135, DOI [10.1038/nrn2158, 10.1038/nrn3158]
  16. Indefrey P, 2011, FRONT PSYCHOL, V2, DOI 10.3389/fpsyg.2011.00255
  17. Jancke L, 2001, BRAIN LANG, V78, P349, DOI 10.1006/brln.2000.2476
  18. Jung-Beeman M, 2005, TRENDS COGN SCI, V9, P512, DOI 10.1016/j.tics.2005.09.009
  19. KELSO JAS, 1979, J EXP PSYCHOL HUMAN, V5, P229, DOI 10.1037//0096-1523.5.2.229
  20. Maki Y, 2008, NEUROIMAGE, V42, P1295, DOI 10.1016/j.neuroimage.2008.06.045
  21. Moes PE, 2007, NEUROPSYCHOLOGIA, V45, P2626, DOI 10.1016/j.neuropsychologia.2007.03.017
  22. Nazir TA, 2017, BEHAV RES METHODS, V49, P61, DOI 10.3758/s13428-015-0696-7
  23. OLDFIELD RC, 1971, NEUROPSYCHOLOGIA, V9, P97, DOI 10.1016/0028-3932(71)90067-4
  24. Prichard E, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00009
  25. Rapp B, 2014, LANG COGN NEUROSCI, V29, P24, DOI 10.1080/01690965.2013.848991
  26. Rizzolatti G, 2004, ANNU REV NEUROSCI, V27, P169, DOI 10.1146/annurev.neuro.27.070203.144230
  27. Rizzolatti G, 2016, NAT REV NEUROSCI, V17, P757, DOI 10.1038/nrn.2016.135
  28. Rogers BP, 2004, NEUROIMAGE, V22, P855, DOI 10.1016/j.neuroimage.2004.02.027
  29. Rosso C, 2014, BRAIN STIMUL, V7, P122, DOI 10.1016/j.brs.2013.08.007
  30. Rota G, 2009, HUM BRAIN MAPP, V30, P1605, DOI 10.1002/hbm.20621
  31. Rowan A, 2004, NEUROIMAGE, V22, P665, DOI 10.1016/j.neuroimage.2004.01.034
  32. Sadato N, 1997, J NEUROSCI, V17, P9667
  33. Sollmann N, 2014, NEUROIMAGE, V102, P776, DOI 10.1016/j.neuroimage.2014.09.002
  34. Stout D, 2012, PHILOS T R SOC B, V367, P75, DOI 10.1098/rstb.2011.0099
  35. Westerhausen R, 2006, NEUROSCI LETT, V409, P140, DOI 10.1016/j.neulet.2006.09.028