Targeting the polarization of tumor-associated macrophages and modulating mir-155 expression might be a new approach to treat diffuse large B-cell lymphoma of the elderly

Carregando...
Imagem de Miniatura
Citações na Scopus
19
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
POLES, Wagner A.
NISHI, Erika E.
OLIVEIRA, Mariana B. de
EUGENIO, Angela I. P.
ANDRADE, Tathiana A. de
CAMPOS, Antonio Hugo F. M.
CAMPOS JR., Ruy R. de
VASSALLO, Jose
ALVES, Antonio C.
NETO, Cristovam Scapulatempo
Citação
CANCER IMMUNOLOGY IMMUNOTHERAPY, v.68, n.2, p.269-282, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Aging immune deterioration and Epstein-Barr (EBV) intrinsic mechanisms play an essential role in EBV-positive diffuse large B-cell lymphoma (DLBCL) of the elderly (EBV+DLBCLe) pathogenesis, through the expression of viral proteins, interaction with host molecules and epigenetic regulation, such as miR-155, required for induction of M1 phenotype of macrophages. This study aims to evaluate the relationship between macrophage polarization pattern in the tumor microenvironment and relative expression of miR-155 in EBV+DLBCLe and EBV-negative DLBCL patients. We studied 28 EBV+DLBCLe and 65 EBV-negative DLBCL patients. Tumor-associated macrophages (TAM) were evaluated by expression of CD68, CD163 and CD163/CD68 ratio (degree of M2 polarization), using tissue microarray. RNA was extracted from paraffin-embedded tumor samples for miR-155 relative expression study. We found a significantly higher CD163/CD68 ratio in EBV+DLBCLe compared to EBV-negative DLBCL. In EBV-negative DLBCL, CD163/CD68 ratio was higher among advanced-staged/high-tumor burden disease and overexpression of miR-155 was associated with decreased polarization to the M2 phenotype of macrophages. The opposite was observed in EBV+DLBCLe patients: we found a positive association between miR-155 relative expression and CD163/CD68 ratio, which was not significant after outlier exclusion. We believe that the higher CD163/CD68 ratio in this group is probably due to the presence of the EBV since it directly affects macrophage polarization towards M2 phenotype through cytokine secretion in the tumor microenvironment. Therapeutic strategies modulating miR-155 expression or preventing immuno-regulatory and pro-tumor macrophage polarization could be adjuvants in EBV+DLBCLe therapy since this entity has a rich infiltration of M2 macrophages in its tumor microenvironment.
Palavras-chave
Non-Hodgkin lymphoma, EBV, Immunohistochemistry, Tumor-associated macrophages, microRNA
Referências
  1. Baran CP, 2003, J BIOL CHEM, V278, P38628, DOI 10.1074/jbc.M305021200
  2. Barros MHM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0080908
  3. Barth S, 2011, BBA-GENE REGUL MECH, V1809, P631, DOI 10.1016/j.bbagrm.2011.05.010
  4. Castillo JJ, 2011, ONCOLOGIST, V16, P87, DOI 10.1634/theoncologist.2010-0213
  5. Coutinho R, 2015, HAEMATOLOGICA, V100, P363, DOI 10.3324/haematol.2014.110189
  6. de Andrade TA, 2014, ONCOTARGET, V5, P11813, DOI 10.18632/oncotarget.2952
  7. De Henau O, 2016, NATURE, V539, P443, DOI 10.1038/nature20554
  8. De Palma M, 2005, CANCER CELL, V8, P211, DOI 10.1016/j.ccr.2005.08.0052
  9. Essandoh K, 2016, SHOCK, V46, P122, DOI 10.1097/SHK.0000000000000604
  10. Gatto G, 2008, NUCLEIC ACIDS RES, V36, P6608, DOI 10.1093/nar/gkn666
  11. Gomez-Gelvez JC, 2016, AM J CLIN PATHOL, V145, P514, DOI 10.1093/ajcp/aqw034
  12. Goni R, 2012, INTEGROMICS W P, V9, P1
  13. Hasan D, 2012, J NEUROINFLAMM, V9, DOI 10.1186/1742-2094-9-222
  14. Hasselblom S, 2008, PATHOL INT, V58, P529, DOI 10.1111/j.1440-1827.2008.02268.x
  15. Hinkle D. E., 2003, APPL STAT BEHAV SCI
  16. Ino Y, 2013, BRIT J CANCER, V108, P914, DOI 10.1038/bjc.2013.32
  17. Jeong J, 2017, HUM PATHOL, V64, P222, DOI 10.1016/j.humpath.2017.04.012
  18. Kaneda MM, 2016, NATURE, V539, P437, DOI 10.1038/nature19834
  19. Kawamura K, 2009, PATHOL INT, V59, P300, DOI 10.1111/j.1440-1827.2009.02369.x
  20. Lan CY, 2013, TECHNOL CANCER RES T, V12, P259, DOI 10.7785/tcrt.2012.500312
  21. Lawrie CH, 2013, BRIT J HAEMATOL, V160, P571, DOI 10.1111/bjh.12157
  22. Li C, 2009, BLOOD, V113, P6681, DOI 10.1182/blood-2009-01-202028
  23. Linnstaedt SD, 2010, J VIROL, V84, P11670, DOI 10.1128/JVI.01248-10
  24. Livak KJ, 2001, METHODS, V25, P402, DOI 10.1006/meth.2001.1262
  25. Lu LQ, 2016, SCI REP-UK, V6, DOI 10.1038/srep37446
  26. Mantovani A, 2008, NATURE, V454, P436, DOI 10.1038/nature07205
  27. Mantovani A, 2010, CURR OPIN IMMUNOL, V22, P231, DOI 10.1016/j.coi.2010.01.009
  28. Marchesi F, 2015, HEMATOL ONCOL, V33, P110, DOI 10.1002/hon.2142
  29. Marinaccio C, 2014, LEUKEMIA RES, V38, P1374, DOI 10.1016/j.leukres.2014.09.007
  30. Meyer PN, 2011, AM J CLIN PATHOL, V135, P54, DOI 10.1309/AJCPJX4BJV9NLQHY
  31. Miselis NR, 2008, MOL CANCER THER, V7, P788, DOI 10.1158/1535-7163.MCT-07-0579
  32. Mondal S, 2012, MOL BIOL CELL, V23, P1219, DOI 10.1091/mbc.E11-10-0889
  33. Montes-Moreno S, 2012, MODERN PATHOL, V25, P968, DOI 10.1038/modpathol.2012.52
  34. Morscio J, 2017, MODERN PATHOL, V30, P370, DOI 10.1038/modpathol.2016.199
  35. Movahedi K, 2010, CANCER RES, V70, P5728, DOI 10.1158/0008-5472.CAN-09-4672
  36. Nakamura S, 2008, WHO CLASSIFICATION T, P243
  37. Nam SJ, 2014, LEUKEMIA LYMPHOMA, V55, P2466, DOI 10.3109/10428194.2013.879713
  38. Nikolich-Zugich J, 2008, NAT REV IMMUNOL, V8, P512, DOI 10.1038/nri2318
  39. O'Connell RM, 2009, P NATL ACAD SCI USA, V106, P7113, DOI 10.1073/pnas.0902636106
  40. Ok CY, 2013, BLOOD, V122, P328, DOI 10.1182/blood-2013-03-489708
  41. Oyama T, 2003, AM J SURG PATHOL, V27, P16, DOI 10.1097/00000478-200301000-00003
  42. Park S, 2007, BLOOD, V110, P972, DOI 10.1182/blood-2007-01-067769
  43. Pfeffer S, 2004, SCIENCE, V304, P734, DOI 10.1126/science.1096781
  44. Qian BZ, 2010, CELL, V141, P39, DOI 10.1016/j.cell.2010.03.014
  45. Rajaram MVS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0007919
  46. Riihijarvi S, 2015, HAEMATOLOGICA, V100, P238, DOI 10.3324/haematol.2014.113472
  47. Robertus JL, 2010, BRIT J HAEMATOL, V149, P896, DOI 10.1111/j.1365-2141.2010.08111.x
  48. Rogers TL, 2011, J TRANSL MED, V9, DOI 10.1186/1479-5876-9-177
  49. Sandhu Sukhinder K, 2011, Adv Hematol, V2011, P347137, DOI 10.1155/2011/347137
  50. Sato A, 2014, BLOOD, V124, P2989
  51. SHIPP MA, 1993, NEW ENGL J MED, V329, P987
  52. Sica A, 2008, SEMIN CANCER BIOL, V18, P349, DOI 10.1016/j.semcancer.2008.03.004
  53. Swerdlow S. H., 2008, WHO CLASSIFICATION T
  54. Swerdlow SH, 2016, BLOOD, V127, P2375, DOI 10.1182/blood-2016-01-643569
  55. Tan GW, 2018, PATHOGENS, V7, DOI 10.3390/pathogens7020040
  56. Wada M, 1999, LEUKEMIA, V13, P792, DOI 10.1038/sj.leu.2401395
  57. Wada N, 2012, HISTOPATHOLOGY, V60, P313, DOI 10.1111/j.1365-2559.2011.04096.x
  58. Wang JX, 2017, ONCOTARGET, V8, P5414, DOI 10.18632/oncotarget.14289
  59. Weber M, 2014, J CRANIO MAXILL SURG, V42, P1087, DOI 10.1016/j.jcms.2014.01.035
  60. Wong KY, 2013, J HEMATOL ONCOL, V6, DOI 10.1186/1756-8722-6-16
  61. Yin QY, 2008, J VIROL, V82, P5295, DOI 10.1128/JVI.02380-07
  62. Zhang PF, 2018, INFLAMMATION, V41, P143, DOI 10.1007/s10753-017-0672-8
  63. Zonari E, 2013, BLOOD, V122, P243, DOI 10.1182/blood-2012-08-449306