Magnetic resonance diffusion tensor imaging for the pedunculopontine nucleus: proof of concept and histological correlation

Carregando...
Imagem de Miniatura
Citações na Scopus
31
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
Citação
BRAIN STRUCTURE & FUNCTION, v.222, n.6, p.2547-2558, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The pedunculopontine nucleus (PPN) has been proposed as target for deep brain stimulation (DBS) in patients with postural instability and gait disorders due to its involvement in muscle tonus adjustments and control of locomotion. However, it is a deep-seated brainstem nucleus without clear imaging or electrophysiological markers. Some studies suggested that diffusion tensor imaging (DTI) may help guiding electrode placement in the PPN by showing the surrounding fiber bundles, but none have provided a direct histological correlation. We investigated DTI fractional anisotropy (FA) maps from in vivo and in situ postmortem magnetic resonance images (MRI) compared to histological evaluations for improving PPN targeting in humans. A post-mortem brain was scanned in a clinical 3T MR system in situ. Thereafter, the brain was processed with a special method ideally suited for cytoarchitectonic analyses. Also, nine volunteers had in vivo brain scanning using the same MRI protocol. Images from volunteers were compared to those obtained in the post-mortem study. FA values of the volunteers were obtained from PPN, inferior colliculus, cerebellar crossing fibers and medial lemniscus using histological data and atlas information. FA values in the PPN were significantly lower than in the surrounding white matter region and higher than in areas with predominantly gray matter. In Nissl-stained histologic sections, the PPN extended for more than 10 mm in the rostro-caudal axis being closely attached to the lateral parabrachial nucleus. Our DTI analyses and the spatial correlation with histological findings proposed a location for PPN that matched the position assigned to this nucleus in the literature. Coregistration of neuroimaging and cytoarchitectonic features can add value to help establishing functional architectonics of the PPN and facilitate neurosurgical targeting of this extended nucleus.
Palavras-chave
Pedunculopontine nucleus, Deep brain stimulation, Diffusion tensor imaging, Histology
Referências
  1. Afshar F., 1978, STEREOTAXIC ATLAS HU
  2. Alegro M, 2015, COMPUTATIONAL PIPELI
  3. Avants BB, 2008, MED IMAGE ANAL, V12, P26, DOI 10.1016/j.media.2007.06.004
  4. Avants BB, 2015, ADV NORMALIZATION TO
  5. Benarroch EE, 2013, NEUROLOGY, V80, P1148, DOI 10.1212/WNL.0b013e3182886a76
  6. Alho ATD, 2016, BRAIN STRUCT FUNCT, V221, P3393, DOI 10.1007/s00429-015-1108-6
  7. Ferraye MU, 2010, BRAIN, V133, P205, DOI 10.1093/brain/awp229
  8. Fournier-Gosselin MP, 2013, MOVEMENT DISORD, V28, P1330, DOI 10.1002/mds.25620
  9. Fraix V, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0083919
  10. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  11. Hamani C, 2007, PARKINSONISM RELAT D, V13, pS276, DOI 10.1016/S1353-8020(08)70016-6
  12. Hamani C, 2011, J NEURAL TRANSM, V118, P1461, DOI 10.1007/s00702-010-0547-8
  13. HAZRATI LN, 1992, BRAIN RES, V585, P267, DOI 10.1016/0006-8993(92)91216-2
  14. Heinsen H, 2000, J CHEM NEUROANAT, V20, P49, DOI 10.1016/S0891-0618(00)00067-3
  15. Heinsen H, 2004, ACTA NEUROPATHOL, V108, P374
  16. HEINSEN H, 1991, J HISTOTECHNOL, V14, P167
  17. Jenkinson N, 2006, NEUROREPORT, V17, P639, DOI 10.1097/00001756-200604240-00016
  18. KANG Y, 1990, BRAIN RES, V535, P79, DOI 10.1016/0006-8993(90)91826-3
  19. Mazzone P, 2008, Br J Neurosurg, V22 Suppl 1, pS33, DOI 10.1080/02688690802448327
  20. Mazzone P, 2007, NEUROREPORT, V18, P1407, DOI 10.1097/WNR.0b013e3282638614
  21. Mazzone P, 2016, J NEURAL TRANSM, V123, P653, DOI 10.1007/s00702-016-1532-7
  22. Moro E, 2010, BRAIN, V133, P215, DOI 10.1093/brain/awp261
  23. Muthusamy KA, 2007, J NEUROSURG, V107, P814, DOI 10.3171/JNS-07/10/0814
  24. Olszewski J, 1982, CYTOARCHITECTURE HUM
  25. Plaha P, 2005, NEUROREPORT, V16, P1883, DOI 10.1097/01.wnr.0000187637.20771.a0
  26. Quester R, 1997, J NEUROSCI METH, V75, P81, DOI 10.1016/S0165-0270(97)00050-2
  27. REdL Ferretti, 2010, DEMENT NEUROPSYCHOL, V4, P6
  28. SAPER CB, 1982, BRAIN RES, V252, P367, DOI 10.1016/0006-8993(82)90404-8
  29. Schulz G, 2011, J NEUROSCI METH, V202, P17, DOI 10.1016/j.jneumeth.2011.08.031
  30. Simmons DM, 2009, BRAIN RES REV, V60, P349, DOI 10.1016/j.brainresrev.2009.02.002
  31. Souza CD, 2016, CLIN NEUROPHYSIOL, V127, P3470, DOI 10.1016/j.clinph.2016.09.006
  32. Stefani A, 2007, BRAIN, V130, P1596, DOI 10.1093/brain/aw1346
  33. Strauss I, 2014, PARKINSONISM RELAT D, V20, P187, DOI 10.1016/S1353-8020(13)70044-0
  34. Thevathasan W, 2011, NEUROSURGERY, V69, P1248, DOI 10.1227/NEU.0b013e31822b6f71
  35. Thevathasan W, 2011, BRAIN, V134, P2085, DOI 10.1093/brain/awr131
  36. Yelnik J, 2007, BRAIN, V130, DOI 10.1093/brain/awm138
  37. Yeo SS, 2011, STEREOT FUNCT NEUROS, V89, P152, DOI 10.1159/000324890
  38. Zrinzo Ludvic, 2007, Neuroreport, V18, P1631
  39. Zrinzo L, 2008, BRAIN, V131, P1588, DOI 10.1093/brain/awn075
  40. Zrinzo L, 2011, J NEURAL TRANSM, V118, P1487, DOI 10.1007/s00702-011-0639-0