A non-expensive bidimensional kinematic balance assessment can detect early postural instability in people with Parkinson's disease

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
HELENE, Andre Frazao
ROQUE, Antonio C.
MIRANDA, Jose Garcia Vivas
Citação
FRONTIERS IN NEUROLOGY, v.14, article ID 1243445, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundPostural instability is a debilitating cardinal symptom of Parkinson's disease (PD). Its onset marks a pivotal milestone in PD when balance impairment results in disability in many activities of daily living. Early detection of postural instability by non-expensive tools that can be widely used in clinical practice is a key factor in the prevention of falls in widespread population and their negative consequences.ObjectiveThis study aimed to investigate the effectiveness of a two-dimensional balance assessment to identify the decline in postural control associated with PD progression.MethodsThis study recruited 55 people with PD, of which 37 were men. Eleven participants were in stage I, twenty-three in stage II, and twenty-one in stage III. According to the Hoehn and Yahr (H&Y) rating scale, three clinical balance tests (Timed Up and Go test, Balance Evaluation Systems Test, and Push and Release test) were carried out in addition to a static stance test recorded by a two-dimensional movement analysis software. Based on kinematic variables generated by the software, a Postural Instability Index (PII) was created, allowing a comparison between its results and those obtained by clinical tests.ResultsThere were differences between sociodemographic variables directly related to PD evolution. Although all tests were correlated with H&Y stages, only the PII was able to differentiate the first three stages of disease evolution (H&Y I and II: p = 0.03; H&Y I and III: p = 0.00001; H&Y II and III: p = 0.02). Other clinical tests were able to differentiate only people in the moderate PD stage (H&Y III).ConclusionBased on the PII index, it was possible to differentiate the postural control decline among the first three stages of PD evolution. This study offers a promising possibility of a low-cost, early identification of subtle changes in postural control in people with PD in clinical practice.
Palavras-chave
Parkinson's disease, balance, postural instability, cinematic assessment, early Parkinson
Referências
  1. Allen NE, 2022, COCHRANE DB SYST REV, DOI 10.1002/14651858.CD011574.pub2
  2. Almeida LRS, 2016, PHYS THER, V96, P1074, DOI 10.2522/ptj.20150168
  3. Barbieri FA, 2019, HUM MOVEMENT SCI, V63, P129, DOI 10.1016/j.humov.2018.10.008
  4. Baston C, 2014, GAIT POSTURE, V40, P70, DOI 10.1016/j.gaitpost.2014.02.012
  5. Becker D, 2022, PARKINSONS DIS-US, V2022, DOI 10.1155/2022/6233835
  6. BECKLEY DJ, 1991, ELECTROEN CLIN NEURO, V81, P263, DOI 10.1016/0168-5597(91)90012-M
  7. Benatru I, 2008, NEUROPHYSIOL CLIN, V38, P459, DOI 10.1016/j.neucli.2008.07.006
  8. Beuter A, 2008, CAN J NEUROL SCI, V35, P65, DOI 10.1017/S0317167100007575
  9. Blaszczyk JW, 2007, EXP BRAIN RES, V183, P107, DOI 10.1007/s00221-007-1024-y
  10. Blaszczyk JW, 2011, HUM MOVEMENT SCI, V30, P396, DOI 10.1016/j.humov.2010.07.017
  11. Bloem B R, 1992, J Geriatr Psychiatry Neurol, V5, P78
  12. Bloem BR, 2016, MOVEMENT DISORD, V31, P1342, DOI 10.1002/mds.26572
  13. Bohnen NI, 2011, BEHAV BRAIN RES, V221, P564, DOI 10.1016/j.bbr.2009.12.048
  14. Bronstein AM, 1996, NEUROLOGY, V47, P651, DOI 10.1212/WNL.47.3.651
  15. Ciria LF, 2017, GAIT POSTURE, V52, P100, DOI 10.1016/j.gaitpost.2016.11.020
  16. Collomb-Clerc A, 2015, NEUROPHYSIOL CLIN, V45, P371, DOI 10.1016/j.neucli.2015.07.001
  17. Costa ED, 2022, GAIT POSTURE, V97, P130, DOI 10.1016/j.gaitpost.2022.07.250
  18. Creaby MW, 2018, PARKINSONISM RELAT D, V57, P1, DOI 10.1016/j.parkreldis.2018.07.008
  19. d'Alencar MS, 2023, FRONT NEUROL, V14, DOI 10.3389/fneur.2023.1101650
  20. Delval A, 2021, CLIN NEUROPHYSIOL, V132, P536, DOI 10.1016/j.clinph.2020.11.027
  21. Di Giulio I, 2016, J NEUROPHYSIOL, V116, P493, DOI 10.1152/jn.00996.2015
  22. Dibble Lee E, 2006, J Neurol Phys Ther, V30, P60
  23. Doná F, 2016, PHYSIOTHERAPY, V102, P272, DOI 10.1016/j.physio.2015.08.009
  24. Duncan RP, 2013, PHYS THER, V93, P542, DOI 10.2522/ptj.20120302
  25. Fernandes A, 2015, MED ENG PHYS, V37, P1070, DOI 10.1016/j.medengphy.2015.08.011
  26. Frenkel-Toledo Silvi, 2005, J Neuroeng Rehabil, V2, P23, DOI 10.1186/1743-0003-2-23
  27. Frenklach A, 2009, MOVEMENT DISORD, V24, P377, DOI 10.1002/mds.22358
  28. Haaxma CA, 2007, J NEUROL NEUROSUR PS, V78, P819, DOI 10.1136/jnnp.2006.103788
  29. Harro CC, 2016, PHYS THER, V96, P1955, DOI 10.2522/ptj.20160099
  30. HOEHN MM, 1967, NEUROLOGY, V17, P427, DOI 10.1212/WNL.17.5.427
  31. Horak FB, 2009, PHYS THER, V89, P484, DOI 10.2522/ptj.20080071
  32. Huang SL, 2011, PHYS THER, V91, P114, DOI 10.2522/ptj.20090126
  33. HUGHES AJ, 1992, J NEUROL NEUROSUR PS, V55, P181, DOI 10.1136/jnnp.55.3.181
  34. Johnson L, 2013, MOVEMENT DISORD, V28, P1250, DOI 10.1002/mds.25449
  35. Kamieniarz A, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245353
  36. Kamieniarz A, 2018, CLIN INTERV AGING, V13, P2301, DOI 10.2147/CIA.S180894
  37. Keus SHJ, 2009, MOVEMENT DISORD, V24, P1, DOI 10.1002/mds.22141
  38. King L, 2013, PHYS THER, V93, P571, DOI 10.2522/ptj.2013.93.4.571
  39. Leroy T, 2023, J PARKINSON DIS, V13, P3, DOI 10.3233/JPD-223536
  40. Li Y, 2023, FRONT AGING NEUROSCI, V15, DOI 10.3389/fnagi.2023.1136177
  41. Mancini M, 2011, PARKINSONISM RELAT D, V17, P557, DOI 10.1016/j.parkreldis.2011.05.010
  42. Maurer C, 2006, EXP BRAIN RES, V171, P231, DOI 10.1007/s00221-005-0256-y
  43. Mazilu S, 2016, PERVASIVE MOB COMPUT, V33, P1, DOI 10.1016/j.pmcj.2015.12.007
  44. McVey MA, 2013, GAIT POSTURE, V38, P800, DOI 10.1016/j.gaitpost.2013.03.028
  45. Mollinedo I, 2020, J EXERC REHABIL, V16, P302, DOI 10.12965/jer.2040532.266
  46. Nonnekes J, 2013, EXPERT REV NEUROTHER, V13, P1303, DOI 10.1586/14737175.2013.839231
  47. Palakurthi B, 2019, BRAIN SCI, V9, DOI 10.3390/brainsci9090239
  48. Palmerini L, 2011, IEEE T INF TECHNOL B, V15, P481, DOI 10.1109/TITB.2011.2107916
  49. Park JH, 2015, J MOV DISORD, V8, P109, DOI 10.14802/jmd.15018
  50. Paul SS, 2014, J PARKINSON DIS, V4, P699, DOI 10.3233/JPD-140438
  51. Peña N, 2013, REV BRAS ENSINO FIS, V35, DOI 10.1590/S1806-11172013000300024
  52. Poewe W, 2009, MOVEMENT DISORD, V24, pS671, DOI 10.1002/mds.22600
  53. Pérez-Sánchez JR, 2019, PARKINSONS DIS-US, V2019, DOI 10.1155/2019/6304842
  54. Rinalduzzi S, 2015, BIOMED RES INT, V2015, DOI 10.1155/2015/434683
  55. Rocchi L, 2002, J NEUROL NEUROSUR PS, V73, P267, DOI 10.1136/jnnp.73.3.267
  56. Salarian A, 2010, IEEE T NEUR SYS REH, V18, P303, DOI 10.1109/TNSRE.2010.2047606
  57. Schlenstedt C, 2016, DEUT MED WOCHENSCHR, V141, P1441, DOI 10.1055/s-0042-112082
  58. Schlenstedt C, 2016, PARKINSONISM RELAT D, V24, P107, DOI 10.1016/j.parkreldis.2015.12.011
  59. Sebastia-Amat S, 2023, INT J ENV RES PUB HE, V20, DOI 10.3390/ijerph20020981
  60. Shulman LM, 2008, MOVEMENT DISORD, V23, P790, DOI 10.1002/mds.21879
  61. Song J, 2012, PARKINSONS DIS-US, V2012, DOI 10.1155/2012/386962
  62. Stack E, 2018, GAIT POSTURE, V62, P321, DOI 10.1016/j.gaitpost.2018.03.047
  63. Viccaro LJ, 2011, J AM GERIATR SOC, V59, P887, DOI 10.1111/j.1532-5415.2011.03336.x
  64. Virmani T, 2023, GAIT POSTURE, V103, P106, DOI 10.1016/j.gaitpost.2023.05.005
  65. Visser M, 2003, ARCH PHYS MED REHAB, V84, P1669, DOI 10.1053/S0003-9993(03)00348-4
  66. Vitorio R, 2023, PARKINSONISM RELAT D, V106, DOI 10.1016/j.parkreldis.2022.105235
  67. Miranda JGV, 2018, SCI REP-UK, V8, DOI 10.1038/s41598-018-29470-y
  68. Winser SJ, 2019, CLIN REHABIL, V33, P1949, DOI 10.1177/0269215519877498
  69. Zhang H, 2020, SENSORS-BASEL, V20, DOI 10.3390/s20216146