Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion

Carregando...
Imagem de Miniatura
Citações na Scopus
95
Tipo de produção
article
Data de publicação
2013
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER LONDON LTD
Autores
ASSIS, Livia
MORETTI, Ana Iochabel Soares
HAMBLIN, Michael R.
PARIZOTTO, Nivaldo Antonio
Citação
LASERS IN MEDICAL SCIENCE, v.28, n.3, p.947-955, 2013
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Muscle regeneration is a complex phenomenon, involving replacement of damaged fibers by new muscle fibers. During this process, there is a tendency to form scar tissue or fibrosis by deposition of collagen that could be detrimental to muscle function. New therapies that could regulate fibrosis and favor muscle regeneration would be important for physical therapy. Low-level laser therapy (LLLT) has been studied for clinical treatment of skeletal muscle injuries and disorders, even though the molecular and cellular mechanisms have not yet been clarified. The aim of this study was to evaluate the effects of LLLT on molecular markers involved in muscle fibrosis and regeneration after cryolesion of the tibialis anterior (TA) muscle in rats. Sixty Wistar rats were randomly divided into three groups: control, injured TA muscle without LLLT, injured TA muscle treated with LLLT. The injured region was irradiated daily for four consecutive days, starting immediately after the lesion using an AlGaAs laser (808 nm, 30 mW, 180 J/cm(2); 3.8 W/cm(2), 1.4 J). The animals were sacrificed on the fourth day after injury. LLLT significantly reduced the lesion percentage area in the injured muscle (p < 0.05), increased mRNA levels of the transcription factors MyoD and myogenin (p < 0.01) and the pro-angiogenic vascular endothelial growth factor (p < 0.01). Moreover, LLLT decreased the expression of the profibrotic transforming growth factor TGF-beta mRNA (p < 0.01) and reduced type I collagen deposition (p < 0.01). These results suggest that LLLT could be an effective therapeutic approach for promoting skeletal muscle regeneration while preventing tissue fibrosis after muscle injury.
Palavras-chave
LLLT, Muscle cryolesion, Muscle regeneration, MRFs, Growth factors
Referências
  1. Amaral AC, 2001, LASER MED SCI, V16, P44, DOI 10.1007/PL00011336
  2. Ben-Dov N, 1999, BBA-MOL CELL RES, V1448, P372, DOI 10.1016/S0167-4889(98)00147-5
  3. BIBIKOVA A, 1994, ANAT EMBRYOL, V190, P597
  4. Botusan IR, 2008, P NATL ACAD SCI USA, V105, P19426, DOI 10.1073/pnas.0805230105
  5. Charge SBP, 2004, PHYSIOL REV, V84, P209, DOI 10.1152/physrev.00019.2003
  6. Cressoni MDC, 2008, PHOTOMED LASER SURG, V26, P461, DOI 10.1089/pho.2007.2150
  7. Demidova-Rice TN, 2007, LASER SURG MED, V39, P706, DOI 10.1002/lsm.20549
  8. Deveci D, 2002, EXP PHYSIOL, V87, P287, DOI 10.1113/eph8702377
  9. Ehrhardt J, 2005, CURR OPIN NEUROL, V18, P548, DOI 10.1097/01.wco.0000177382.62156.82
  10. Filippin LI, 2011, NITRIC OXIDE-BIOL CH, V24, P43, DOI 10.1016/j.niox.2010.11.003
  11. Fillipin LI, 2005, LASER SURG MED, V37, P293, DOI 10.1002/lsm.20225
  12. Fukushima K, 2001, AM J SPORT MED, V29, P394
  13. Gomes AR, 2006, ARCH PHYS MED REHAB, V87, P241, DOI 10.1016/j.apmr.2005.08.126
  14. Hamblin MR, 2010, LASER SURG MED, V42, P447, DOI 10.1002/lsm.20959
  15. Holterman CE, 2005, SEMIN CELL DEV BIOL, V16, P575, DOI 10.1016/j.semcdb.2005.07.004
  16. Huard J, 2002, J BONE JOINT SURG AM, V84A, P822
  17. HURME T, 1992, MED SCI SPORT EXER, V24, P197
  18. Iyomasa DM, 2009, MICRON, V40, P413, DOI 10.1016/j.micron.2009.02.002
  19. Jarvinen TAHJ, 2005, AM J SPORT MED, V33, P745, DOI 10.1177/0363546505274714
  20. Kipshidze N, 2001, LASER SURG MED, V28, P355, DOI 10.1002/lsm.1062
  21. Kollias HD, 2008, J APPL PHYSIOL, V104, P579, DOI 10.1152/japplphysiol.01091.2007
  22. Le Grand F, 2007, CURR OPIN CELL BIOL, V19, P628, DOI 10.1016/j.ceb.2007.09.012
  23. Li Y, 2004, AM J PATHOL, V164, P1007, DOI 10.1016/S0002-9440(10)63188-4
  24. Mesquita-Ferrari RA, 2011, LASER MED SCI, V26, P335, DOI 10.1007/s10103-010-0850-5
  25. Miyabara EH, 2006, AM J PHYSIOL-CELL PH, V290, pC1128, DOI 10.1152/ajpcell.00399.2005.
  26. Nakano J, 2009, EXP PHYSIOL, V94, P1005, DOI 10.1113/expphysiol.2009.047738
  27. Olsson AK, 2006, NAT REV MOL CELL BIO, V7, P359, DOI 10.1038/nrm1911
  28. Oron U, 2006, PHOTOMED LASER SURG, V24, P111, DOI 10.1089/pho.2006.24.111
  29. RANTANEN J, 1995, LAB INVEST, V72, P341
  30. Renno ACM, 2011, PHOTOMED LASER SURG, V29, P5, DOI 10.1089/pho.2009.2715
  31. Rizzi CF, 2006, LASER SURG MED, V38, P704, DOI 10.1002/lsm.20371
  32. Sakuma K, 1999, BBA-GEN SUBJECTS, V1428, P284, DOI 10.1016/S0304-4165(99)00086-0
  33. Servetto N, 2010, LASER SURG MED, V42, P577, DOI 10.1002/lsm.20910
  34. Shefer G, 2002, J CELL SCI, V115, P1461
  35. Shefer G, 2003, BBA-MOL CELL RES, V1593, P131, DOI 10.1016/S0167-4889(02)00350-6
  36. Shefer G, 2001, J CELL PHYSIOL, V187, P73, DOI 10.1002/1097-4652(2001)9999:9999<::AID-JCP1053>3.0.CO;2-9
  37. Shi XZ, 2006, GENE DEV, V20, P1692, DOI 10.1101/gad.1419406
  38. Silveira PCL, 2009, J PHOTOCH PHOTOBIO B, V95, P89, DOI 10.1016/j.jphotobiol.2009.01.004
  39. Tuby H, 2006, LASER SURG MED, V38, P682, DOI 10.1002/lsm.20377
  40. Wagatsuma A, 2007, MOL CELL BIOCHEM, V298, P151, DOI 10.1007/s11010-006-9361-x
  41. Warren GL, 2002, FASEB J, V16, P1630, DOI 10.1096/fj.02-0187fje