Feasibility of Ga-68-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
E-CENTURY PUBLISHING CORP
Autores
RETAMAL, Jaime
SORENSEN, Jens
LUBBERINK, Mark
SUAREZ-SIPMANN, Fernando
FEINSTEIN, Ricardo
JALKANEN, Sirpa
ANTONI, Gunnar
HEDENSTIERNA, Goran
ROIVAINEN, Anne
Citação
AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, v.6, n.1, p.18-31, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [O-15]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting Ga-68-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([Ga-68]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [Ga-68]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (K-i) for the tissue perfusion resulted in 4-fold higher uptake rate of [Ga-68]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [Ga-68]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion.
Palavras-chave
Ga-68, PET, lung inflammation, Siglec-9, VAP-1
Referências
  1. Aalto K, 2012, ARTERIOSCL THROM VAS, V32, P523, DOI 10.1161/ATVBAHA.111.238030
  2. Aalto K, 2011, BLOOD, V118, P3725, DOI 10.1182/blood-2010-09-311076
  3. Ahtinen H, 2014, EJNMMI RES, V4, DOI 10.1186/s13550-014-0045-3
  4. Ataseven A, 2014, G ITAL DERMATOL VENE
  5. Autio Anu, 2013, J Nucl Med, V54, P1315, DOI 10.2967/jnumed.113.120295
  6. Autio A, 2013, EJNMMI RES, V3, DOI 10.1186/2191-219X-3-1
  7. Autio A, 2011, EJNMMI RES, V1, DOI 10.1186/2191-219X-1-10
  8. Autio A, 2010, EUR J NUCL MED MOL I, V37, P1918, DOI 10.1007/s00259-010-1497-y
  9. Bellani G, 2009, CRIT CARE MED, V37, P2216, DOI 10.1097/CCM.0b013e3181aab31f
  10. BHATTACHARYA J, 1989, J APPL PHYSIOL, V66, P2600
  11. Borges JB, 2015, CRIT CARE MED, V43, pE123, DOI 10.1097/CCM.0000000000000926
  12. Borges JB, 2014, CRIT CARE MED, V42, pE279, DOI 10.1097/CCM.0000000000000161
  13. Costa ELV, 2010, ANESTHESIOLOGY, V112, P658, DOI 10.1097/ALN.0b013e3181cbd1d4
  14. de Prost N, 2010, AM J ROENTGENOL, V195, P292, DOI 10.2214/AJR.10.4499
  15. de Winter JCF, 2013, PRACTICAL ASSESSMENT, P18
  16. Fan E, 2013, BMC MED, V11, DOI 10.1186/1741-7015-11-85
  17. Jaakkola K, 2000, AM J PATHOL, V157, P463, DOI 10.1016/S0002-9440(10)64558-0
  18. Lankinen P, 2008, EUR J NUCL MED MOL I, V35, P352, DOI 10.1007/s00259-007-0637-5
  19. Matthay MA, 2011, ANNU REV PATHOL-MECH, V6, P147, DOI 10.1146/annurev-pathol-011110-130158
  20. Murata M, 2012, INVEST OPHTH VIS SCI, V53, P4055, DOI 10.1167/iovs.12-9857
  21. Musch G, 2008, AM J RESP CRIT CARE, V177, P292, DOI 10.1164/rccm.200703-484OC
  22. RHODES CG, 1995, EUR RESPIR J, V8, P1001
  23. Roivainen A, 2012, EUR J NUCL MED MOL I, V39, P68, DOI 10.1007/s00259-011-1987-6
  24. SALMI M, 1993, J EXP MED, V178, P2255, DOI 10.1084/jem.178.6.2255
  25. Singh B, 2003, VIRCHOWS ARCH, V442, P491, DOI 10.1007/s00428-003-0802-6
  26. Suarez-Sipmann F, 2013, J CLIN MONIT COMPUT, V27, P47, DOI 10.1007/s10877-012-9391-8
  27. Tohka S, 2001, FASEB J, V15, P373, DOI 10.1096/fj.00-0240com
  28. Ujula T, 2009, NUCL MED BIOL, V36, P631, DOI 10.1016/j.nucmedbio.2009.04.008
  29. Vainio PJ, 2005, BASIC CLIN PHARMACOL, V96, P429, DOI 10.1111/j.1742-7843.2005.pto_96605.x
  30. Velikyan I, 2004, BIOCONJUGATE CHEM, V15, P554, DOI 10.1021/bc030078f
  31. Velikyan I., 2005, THESIS
  32. Virtanen H, 2015, ARTHRITIS RES THER, V17, DOI 10.1186/s13075-015-0826-8
  33. Ware LB, 2006, SEMIN RESP CRIT CARE, V27, P337, DOI 10.1055/s-2006-948288
  34. Watson C. C., 2000, NUCL SCI IEEE T, V47.4, P1587
  35. Wellman TJ, 2014, CRIT CARE MED, V42, pE491, DOI 10.1097/CCM.0000000000000346