The influence of age and sex on the absolute cell numbers of the human brain cerebral cortex

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS INC
Autores
CASTRO-FONSECA, Emily
MORAIS, Viviane
SILVA, Camila G. da
WOLLNER, Juliana
FREITAS, Jaqueline
MELLO-NETO, Arthur F.
OLIVEIRA, Luiz E.
OLIVEIRA, Vilson C. de
Citação
CEREBRAL CORTEX, v.33, n.13, p.8654-8666, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The human cerebral cortex is one of the most evolved regions of the brain, responsible for most higher-order neural functions. Since nerve cells (together with synapses) are the processing units underlying cortical physiology and morphology, we studied how the human neocortex is composed regarding the number of cells as a function of sex and age. We used the isotropic fractionator for cell quantification of immunocytochemically labeled nuclei from the cerebral cortex donated by 43 cognitively healthy subjects aged 25-87 years old. In addition to previously reported sexual dimorphism in the medial temporal lobe, we found more neurons in the occipital lobe of men, higher neuronal density in women's frontal lobe, but no sex differences in the number and density of cells in the other lobes and the whole neocortex. On average, the neocortex has similar to 10.2 billion neurons, 34% in the frontal lobe and the remaining 66% uniformly distributed among the other 3 lobes. Along typical aging, there is a loss of non-neuronal cells in the frontal lobe and the preservation of the number of neurons in the cortex. Our study made possible to determine the different degrees of modulation that sex and age evoke on cortical cellularity.
Palavras-chave
aging, cerebral cortex, isotropic fractionator, number of neurons, sexual dimorphism
Referências
  1. Allen JS, 2005, NEUROBIOL AGING, V26, P1245, DOI 10.1016/j.neurobiolaging.2005.05.023
  2. Allen JS, 2003, NEUROIMAGE, V18, P880, DOI 10.1016/S1053-8119(03)00034-X
  3. Anderson B, 1996, BRAIN, V119, P1983, DOI 10.1093/brain/119.6.1983
  4. Anderson ND, 2017, J GERONTOL B-PSYCHOL, V72, P1, DOI 10.1093/geronb/gbw108
  5. Andrade-Moraes CH, 2013, BRAIN, V136, P3738, DOI 10.1093/brain/awt273
  6. Andreano JM, 2009, LEARN MEMORY, V16, P248, DOI 10.1101/lm.918309
  7. Armstrong NM, 2020, NEUROIMAGE, V223, DOI 10.1016/j.neuroimage.2020.117289
  8. Azevedo FAC, 2013, J NEUROSCI METH, V212, P72, DOI 10.1016/j.jneumeth.2012.09.015
  9. Azevedo FAC, 2009, J COMP NEUROL, V513, P532, DOI 10.1002/cne.21974
  10. Bahney J, 2014, J NEUROSCI METH, V222, P165, DOI 10.1016/j.jneumeth.2013.11.002
  11. Bethlehem RAI, 2022, NATURE, V604, P525, DOI 10.1038/s41586-022-04554-y
  12. Bourisly AK, 2017, TRANSL NEUROSCI, V8, P49, DOI 10.1515/tnsci-2017-0009
  13. Braak H, 2003, NEUROBIOL AGING, V24, P197, DOI 10.1016/S0197-4580(02)00065-9
  14. BRAAK H, 1991, ACTA NEUROPATHOL, V82, P239, DOI 10.1007/BF00308809
  15. BRODY H, 1955, J COMP NEUROL, V102, P511, DOI 10.1002/cne.901020206
  16. Bustamante SEZ, 2003, ARQ NEURO-PSIQUIAT, V61, P601, DOI 10.1590/S0004-282X2003000400014
  17. Cairns NJ, 2007, ACTA NEUROPATHOL, V114, P5, DOI 10.1007/s00401-007-0237-2
  18. Chvatal A, 2018, NEUROGLIA, V1, P245, DOI 10.3390/NEUROGLIA1010016
  19. Corballis MC, 2014, PLOS BIOL, V12, DOI 10.1371/journal.pbio.1001767
  20. Cox SR, 2021, MOL PSYCHIATR, V26, P2651, DOI 10.1038/s41380-020-00975-1
  21. CRAGG BG, 1975, BRAIN, V98, P81, DOI 10.1093/brain/98.1.81
  22. DeCasien AR, 2022, BIOL SEX DIFFER, V13, DOI 10.1186/s13293-022-00448-w
  23. DEVANEY KO, 1980, J GERONTOL, V35, P836, DOI 10.1093/geronj/35.6.836
  24. Dickstein DL, 2007, AGING CELL, V6, P275, DOI 10.1111/j.1474-9726.2007.00289.x
  25. Erten-Lyons D, 2013, JAMA NEUROL, V70, P616, DOI 10.1001/jamaneurol.2013.1957
  26. Esiri MM, 2007, J PATHOL, V211, P181, DOI 10.1002/path.2089
  27. Fabricius K, 2013, NEUROBIOL AGING, V34, P91, DOI 10.1016/j.neurobiolaging.2012.06.009
  28. Farrow LF, 2021, J NEUROSCI METH, V352, DOI 10.1016/j.jneumeth.2021.109081
  29. Ferretti Renata Eloah de Lucena, 2010, Dement. neuropsychol., V4, P138
  30. Ferretti-Rebustini Renata Eloah de Lucena, 2015, Dement. neuropsychol., V9, P103, DOI 10.1590/1980-57642015DN92000004
  31. Freeman SH, 2008, J NEUROPATH EXP NEUR, V67, P1205, DOI 10.1097/NEN.0b013e31818fc72f
  32. Godfrey RK., 2021, P ROY SOC B-BIOL SCI, V288, P10
  33. Goldstein JM, 2001, CEREB CORTEX, V11, P490, DOI 10.1093/cercor/11.6.490
  34. Grabowska A, 2017, J NEUROSCI RES, V95, P200, DOI 10.1002/jnr.23953
  35. Grigoletti-Lima GB, 2022, J ALZHEIMERS DIS REP, V6, P17, DOI 10.3233/ADR-210297
  36. Grinberg Lea Tenenholz, 2007, Cell and Tissue Banking, V8, P151, DOI 10.1007/s10561-006-9022-z
  37. HANLEY T, 1974, Age and Ageing, V3, P133, DOI 10.1093/ageing/3.3.133
  38. Harada CN, 2013, CLIN GERIATR MED, V29, P737, DOI 10.1016/j.cger.2013.07.002
  39. HAUG H, 1987, AM J ANAT, V180, P126, DOI 10.1002/aja.1001800203
  40. HENDERSON G, 1980, J NEUROL SCI, V46, P113, DOI 10.1016/0022-510X(80)90048-9
  41. Herculano-Houzel S, 2005, J NEUROSCI, V25, P2518, DOI 10.1523/JNEUROSCI.4526-04.2005
  42. Herculano-Houzel S, 2015, CELL TISSUE RES, V360, P29, DOI 10.1007/s00441-015-2127-6
  43. JORM AF, 1989, PSYCHOL MED, V19, P1015, DOI 10.1017/S0033291700005742
  44. JORM AF, 1994, PSYCHOL MED, V24, P145, DOI 10.1017/S003329170002691X
  45. Juan Sydney M A, 2019, Subcell Biochem, V91, P107, DOI 10.1007/978-981-13-3681-2_5
  46. Kaczkurkin AN, 2019, NEUROPSYCHOPHARMACOL, V44, P71, DOI 10.1038/s41386-018-0111-z
  47. Kim KK, 2009, J BIOL CHEM, V284, P31052, DOI 10.1074/jbc.M109.052969
  48. Kruggel F, 2006, NEUROIMAGE, V30, P1, DOI 10.1016/j.neuroimage.2005.09.063
  49. Lent R, 2012, EUR J NEUROSCI, V35, P1, DOI 10.1111/j.1460-9568.2011.07923.x
  50. LEUBA G, 1994, ANAT EMBRYOL, V190, P351
  51. Matias I, 2019, FRONT AGING NEUROSCI, V11, DOI 10.3389/fnagi.2019.00059
  52. Mattson MP, 2018, CELL METAB, V27, P1176, DOI 10.1016/j.cmet.2018.05.011
  53. McCarthy MM, 2016, PHILOS T R SOC B, V371, DOI 10.1098/rstb.2015.0106
  54. McGinnis SM, 2011, BRAIN TOPOGR, V24, P279, DOI 10.1007/s10548-011-0198-6
  55. Miller DJ, 2014, FRONT NEUROANAT, V8, DOI 10.3389/fnana.2014.00036
  56. MIRRA SS, 1991, NEUROLOGY, V41, P479, DOI 10.1212/WNL.41.4.479
  57. MORRIS JC, 1993, NEUROLOGY, V43, P2412, DOI 10.1212/WNL.43.11.2412-a
  58. MULLEN RJ, 1992, DEVELOPMENT, V116, P201
  59. Nelson PT, 2019, BRAIN, V142, P1503, DOI 10.1093/brain/awz099
  60. Neves K, 2019, J NEUROSCI METH, V326, DOI [10.1016/j.jneumeth.2019.108382, 10.1016/j.jneumeth.2019.108392]
  61. Ngwenya A, 2017, J NEUROSCI METH, V287, P39, DOI 10.1016/j.jneumeth.2017.05.025
  62. Nopoulos P, 2000, PSYCHIAT RES-NEUROIM, V98, P1, DOI 10.1016/S0925-4927(99)00044-X
  63. Oliveira-Pinto AV, 2016, BRAIN STRUCT FUNCT, V221, P3547, DOI 10.1007/s00429-015-1118-4
  64. Oliveira-Pinto AV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0111733
  65. Pakkenberg B, 1997, J COMP NEUROL, V384, P312, DOI 10.1002/(SICI)1096-9861(19970728)384:2<312::AID-CNE10>3.0.CO;2-K
  66. Pelvig DP, 2008, NEUROBIOL AGING, V29, P1754, DOI 10.1016/j.neurobiolaging.2007.04.013
  67. Peters A, 2002, NEUROSCI BIOBEHAV R, V26, P733, DOI 10.1016/S0149-7634(02)00060-X
  68. Raji JI, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0250381
  69. Reilly D, 2016, INTELLIGENCE, V54, P147, DOI 10.1016/j.intell.2015.12.004
  70. Ribeiro PFM, 2013, FRONT NEUROANAT, V7, DOI 10.3389/fnana.2013.00028
  71. Ritchie SJ, 2018, CEREB CORTEX, V28, P2959, DOI 10.1093/cercor/bhy109
  72. Rodrigue KM, 2009, NEUROPSYCHOL REV, V19, P436, DOI 10.1007/s11065-009-9118-x
  73. Sacher J, 2013, MAGN RESON IMAGING, V31, P366, DOI 10.1016/j.mri.2012.06.007
  74. Scheff SW, 2006, NEUROBIOL AGING, V27, P1372, DOI 10.1016/j.neurobiolaging.2005.09.012
  75. Scheff SW, 2003, NEUROBIOL AGING, V24, P1029, DOI 10.1016/j.neurobiolaging.2003.08.002
  76. Schmitz C, 2005, NEUROSCIENCE, V130, P813, DOI 10.1016/j.neuroscience.2004.08.050
  77. Shankar SK, 2010, INDIAN J PATHOL MICR, V53, P595, DOI 10.4103/0377-4929.71995
  78. Simic G, 2005, NEUROSCIENCE, V130, P911, DOI 10.1016/j.neuroscience.2004.09.040
  79. Sorokowski P, 2019, FRONT PSYCHOL, V10, DOI 10.3389/fpsyg.2019.00242
  80. SPERRY R, 1984, NEUROPSYCHOLOGIA, V22, P661, DOI 10.1016/0028-3932(84)90093-9
  81. Storks Levi, 2020, Integr Comp Biol, DOI 10.1093/icb/icaa129
  82. Suemoto CK., 2017, PLOS MED, V14, P1
  83. Sun W, 2017, J NEUROSCI, V37, P4493, DOI 10.1523/JNEUROSCI.3199-16.2017
  84. TERRY RD, 1987, ANN NEUROL, V21, P530, DOI 10.1002/ana.410210603
  85. Torres DB, 2022, NUTR NEUROSCI, DOI 10.1080/1028415X.2022.2131064
  86. Uylings HBM, 2006, CORTEX, V42, P652, DOI 10.1016/S0010-9452(08)70401-5
  87. Valerio-Gomes B, 2018, FRONT NEUROANAT, V12, DOI 10.3389/fnana.2018.00090
  88. Vernooij MW, 2012, NEUROIMAG CLIN N AM, V22, P33, DOI 10.1016/j.nic.2011.11.007
  89. von Bartheld CS, 2018, J CHEM NEUROANAT, V93, P2, DOI 10.1016/j.jchemneu.2017.08.004
  90. von Bartheld CS, 2016, J COMP NEUROL, V524, P3865, DOI 10.1002/cne.24040
  91. Wolf HK, 1996, J HISTOCHEM CYTOCHEM, V44, P1167, DOI 10.1177/44.10.8813082
  92. Yankner BA, 2008, ANNU REV PATHOL-MECH, V3, P41, DOI 10.1146/annurev.pathmechdis.2.010506.092044