Endostatin gene therapy stimulates upregulation of ICAM-1 and VCAM-1 in a metastatic renal cell carcinoma model

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2012
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Autores
CHAVES, K. C. B.
TURACA, L. T.
PESQUERO, J. B.
BRAGA, M. S.
FOGUER, K.
SCHOR, N.
BELLINI, M. H.
Citação
CANCER GENE THERAPY, v.19, n.8, p.558-565, 2012
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
One of the greatest challenges in urological oncology is renal cell carcinoma (RCC), which is the third leading cause of death in genitourinary cancers. RCCs are highly vascularized and respond positively to antiangiogenic therapy. Endostatin (ES) is a fragment of collagen XVIII that possesses antiangiogenic activity. In this study, we examined the potential of ES-based antiangiogenic therapy to activate tumor-associated endothelial cells in metastatic RCC (mRCC). Balb/c-bearing Renca cells were treated with NIH/3T3-LendSN or, as a control, with NIH/3T3-LXSN cells. The T-cell subsets and lymphocyte populations of tumors, mediastinal lymph nodes and the spleen were assessed by flow cytometry. The expression of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) was assessed by real-time PCR, flow cytometry and immunohistochemistry analysis. ES gene therapy led to an increase in the percentage of infiltrating CD4-interferon (IFN)-gamma cells (P<0.05), CD8-IFN-gamma cells (P<0.01) and CD49b-tumor necrosis factor-alpha cells (P<0.01). In addition, ES therapy caused an increase at the mRNA level of ICAM-1 (1.4-fold; P<0.01) and VCAM-1 (1.5-fold) (control vs treated group; P<0.001). Through flow cytometry, we found a significant increase in the CD34/ICAM-1 cells (8.1-fold; P<0.001) and CD34/VCAM-1 cells (1.6-fold; P<0.05). ES gene therapy induced a significant increase in both T CD4 and CD8 cells in the lymph nodes and the spleen, suggesting that ES therapy may facilitate cell survival or clonal expansion. CD49b cells were also present in increased quantities in all of these organs. In this study, we demonstrate an antitumor inflammatory effect of ES in an mRCC model, and this effect is mediated by an increase in ICAM-1 and VCAM-1 expression in tumor-associated endothelial cells.
Palavras-chave
RCC, endostatin, orthotopic metastatic model, ICAM-1, VCAM-1
Referências
  1. Atkins MB, 2002, SEMIN ONCOL, V29, P12, DOI 10.1053/sonc.2002.33077
  2. Attig S, 2009, CANCER RES, V69, P8412, DOI 10.1158/0008-5472.CAN-09-0852
  3. Blaheta RA, 2009, NEOPLASIA, V11, P1054, DOI 10.1593/neo.09762
  4. Chintalapudi MR, 2008, CARCINOGENESIS, V29, P696, DOI 10.1093/carcin/bgn019
  5. Chouaib S, 2010, CRIT REV IMMUNOL, V30, P529
  6. Chowdhury S, 2008, EUR J CANCER, V44, P2152, DOI 10.1016/j.ejca.2008.06.028
  7. Cichy MC, 2009, BRAZ J MED BIOL RES, V42, P1150, DOI 10.1590/S0100-879X2009001200005
  8. Coutinho EL, 2007, FASEB J, V12, P3153
  9. Paule B, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0010715
  10. Di Lorenzo G, 2009, EUR UROL, V56, P959, DOI 10.1016/j.eururo.2009.09.002
  11. Dirkx AEM, 2003, CANCER RES, V63, P2322
  12. Dirkx AEM, 2006, FASEB J, V20, P621, DOI 10.1093/fj.05-4493com
  13. Ferreras M, 2000, FEBS LETT, V486, P247, DOI 10.1016/S0014-5793(00)02249-3
  14. Finley DS, 2011, ONCOLOGIST, V16, P4, DOI 10.1634/theoncologist.2011-S2-04
  15. Fridman WH, 2012, NAT REV CANCER, V12, P298, DOI 10.1038/nrc3245
  16. Goel S, 2011, PHYSIOL REV, V91, P1071, DOI 10.1152/physrev.00038.2010
  17. Griffioen AW, 1998, INT J EXP PATHOL, V79, P363, DOI 10.1046/j.1365-2613.1998.00091.x
  18. Hashizume M, 2011, ARTHRITIS, V2011, DOI 10.1155/2011/765624
  19. Hellebrekers DMEI, 2006, CANCER RES, V66, P10770, DOI 10.1158/0008-5472.CAN-06-1609
  20. Jacobsen J, 2000, J UROLOGY, V163, P343, DOI 10.1016/S0022-5347(05)68049-4
  21. Kirkwood JM, 2009, J CLIN ONCOL, V27, P2583, DOI 10.1200/JCO.2008.21.1540
  22. Kondo T, 2006, CANCER SCI, V97, P780, DOI 10.1111/j.1349-7006.2006.00231.x
  23. Kopecky Otakar, 2007, Acta Medica (Hradec Kralove), V50, P207
  24. Limaye V, 2007, MECH VASCULAR DIS TX, P1
  25. Linker RA, 2008, J NEUROIMMUNOL, V1-2, P64
  26. Rayman P, 2004, CLIN CANCER RES, V10, p6360S, DOI 10.1158/1078-0432.CCR-050011
  27. Rocha FGD, 2010, J FLUORESC, V20, P1225, DOI 10.1007/s10895-010-0672-7
  28. Rocha FGD, 2011, J GENE MED, V13, P148, DOI 10.1002/jgm.1547
  29. Rocha FGD, 2010, CANCER IMMUNOL IMMUN, V59, P1357, DOI 10.1007/s00262-010-0865-6
  30. Ruys AT, 2011, ANN SURG ONCOL, V18, P1932, DOI 10.1245/s10434-010-1526-x
  31. Sacco E, 2011, UROL INT, V86, P125, DOI 10.1159/000322724
  32. Sherief HM, 2003, J UROLOGY, V169, P1530
  33. Shioi K, 2006, CLIN CANCER RES, V12, P7339, DOI 10.1158/1078-0432.CCR-06-1737
  34. Simonson WTN, 2010, DIAGN HISTOPATHOL, V17, P80
  35. Sumpio BE, 2002, INT J BIOCHEM CELL B, V34, P1508, DOI 10.1016/S1357-2725(02)00075-4
  36. Sun M, 2011, EUR UROL, V60, P644, DOI 10.1016/j.eururo.2011.06.041
  37. Tanabe K, 1997, UROL RES, V4, P231
  38. van Beijnum JR, 2008, NAT PROTOC, V3, P1085, DOI 10.1038/nprot.2008.71
  39. van der Veldt AAM, 2010, TARGET ONCOL, V5, P95, DOI 10.1007/s11523-010-0146-5
  40. White UA, 2011, CURR PHARM DESIGN, V17, P340
  41. Xie L, 2011, P NATL ACAD SCI USA, V108, P9939, DOI 10.1073/pnas.1105041108
  42. Yu Y, 2004, P NATL ACAD SCI USA, V101, P8005, DOI 10.1073/pnas.0402551101