<i>N</i>-(4-Methoxyphenyl)Pentanamide, a Simplified Derivative of Albendazole, Displays Anthelmintic Properties against the Nematode <i>Toxocara canis</i>

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER SOC MICROBIOLOGY
Autores
SILVA, Tais C.
MENGARDA, Ana C.
LEMES, Bruna L.
SOUZA, Dalete Christine S.
LAGO, Joao Henrique G.
MORAESA, Josue de
Citação
MICROBIOLOGY SPECTRUM, v.10, n.4, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Infections caused by parasitic helminths have enormous health, social, and economic impacts worldwide. The treatment and control of these diseases have been dependent on a limited set of drugs, many of which have become less effective, necessitating the search for novel anthelmintic agents. In this study, a simplified compound, N-(4-methoxyphenyl)pentanamide (N4MP), based on the structure of the most widely used anthelmintic (albendazole), was chemically prepared using 4-anisidine and pentanoic acid. N-(4-Methoxyphenyl)pentanamide was evaluated in vitro against the nematode Toxocara canis, an ascarid roundworm of animals that can infect humans. Similar to albendazole, bioassays showed that N-(4-methoxyphenyl)pentanamide affected the viability of parasites in a time- and concentration-dependent manner. Interestingly, N-(4-methoxyphenyl)pentanamide showed a profile of lower cytotoxicity to human and animal cell lines than albendazole. Pharmacokinetic, drug-likeness, and medicinal chemistry friendliness studies demonstrated an excellent drug-likeness profile for N-(4-methoxyphenyl)pentanamide as well as an adherence to major pharmaceutical companies' filters. Collectively, the results of this study demonstrate that the molecular simplification of albendazole to give N-(4-methoxyphenyl)pentanamide may be an important pipeline in the discovery of novel anthelmintic agents. IMPORTANCE Infections caused by parasitic helminths have enormous health, social, and economic impacts worldwide. The treatment and control of these diseases have been dependent on a limited set of drugs, many of which have become less effective, necessitating the search for novel anthelmintic agents. Considering this scenario, the present study reports the preparation of N-(4-methoxyphenyl)pentanamide (N4MP), a simplified molecule based on the structure of the most widely used anthelmintic (albendazole). N4MP was evaluated in vitro against the nematode Toxocara canis, a common ascarid roundworm of domestic animals that can infect humans. Similar to albendazole, bioassays showed that N4MP affected the viability of parasites in a time- and concentration-dependent manner but displayed a profile of lower cytotoxicity to human and animal cell lines than albendazole. Therefore, this study demonstrates that the molecular simplification of albendazole to give N4MP may be an important pipeline in the discovery of novel anthelmintic agents.
Palavras-chave
neglected diseases, antiparasitic agents, molecular simplification, albendazole, Toxocara canis, toxocariasis, helminthiasis
Referências
  1. Atmaca H, 2020, CHEM-BIOL INTERACT, V327, DOI 10.1016/j.cbi.2020.109163
  2. Buchter V, 2021, ACS INFECT DIS, V7, P1069, DOI 10.1021/acsinfecdis.0c00435
  3. Castro LSEPW, 2016, REDOX BIOL, V10, P90, DOI 10.1016/j.redox.2016.09.013
  4. Chen J, 2018, INFECT DIS POVERTY, V7, DOI 10.1186/s40249-018-0437-0
  5. Choudhary S, 2022, INT J PARASITOL-DRUG, V18, P52, DOI 10.1016/j.ijpddr.2021.12.001
  6. Daina A, 2017, SCI REP-UK, V7, DOI 10.1038/srep42717
  7. de Moraes J, 2020, TRENDS PARASITOL, V36, P573, DOI 10.1016/j.pt.2020.04.005
  8. Else KJ, 2020, NAT REV DIS PRIMERS, V6, DOI 10.1038/s41572-020-0171-3
  9. Ferreira LLG, 2022, DRUG DISCOV TODAY, V27, P2278, DOI 10.1016/j.drudis.2022.04.004
  10. Geary TG, 2010, INT J PARASITOL, V40, P1, DOI 10.1016/j.ijpara.2009.11.001
  11. Hanser E, 2003, PARASITOL RES, V89, P63, DOI 10.1007/s00436-002-0668-6
  12. Kaplan RM, 2012, VET PARASITOL, V186, P70, DOI 10.1016/j.vetpar.2011.11.048
  13. Lago EM, 2019, EBIOMEDICINE, V43, P370, DOI 10.1016/j.ebiom.2019.04.029
  14. Mafud AC, 2018, TOXICOL IN VITRO, V50, P1, DOI 10.1016/j.tiv.2018.02.012
  15. Mata-Santos T, 2016, PARASITOLOGY, V143, P507, DOI 10.1017/S0031182016000068
  16. Mehlhorn H, 1997, PARASITOL RES, V83, P419, DOI 10.1007/s004360050275
  17. Mengarda AC, 2022, EXPERT OPIN DRUG DEL, V19, P383, DOI 10.1080/17425247.2022.2051477
  18. Mengarda AC, 2021, PHYTOTHER RES, V35, P5154, DOI 10.1002/ptr.7184
  19. Morais CS, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-02792-0
  20. Moser W, 2017, BMJ-BRIT MED J, V358, DOI 10.1136/bmj.j4307
  21. O'Neill M, 2016, PLOS NEGLECT TROP D, V10, DOI 10.1371/journal.pntd.0004698
  22. Racoviceanu R, 2020, MOLECULES, V25, DOI 10.3390/molecules25215130
  23. RAJAPAKSE RPVJ, 1992, J PARASITOL, V78, P1090, DOI 10.2307/3283237
  24. Roquini DB, 2022, FRONT PHARMACOL, V13, DOI 10.3389/fphar.2022.901459
  25. Sessa DP, 2020, J NAT PROD, V83, P3744, DOI 10.1021/acs.jnatprod.0c01050
  26. Sharma P, 2016, EUR J MED CHEM, V124, P608, DOI 10.1016/j.ejmech.2016.08.029
  27. Sinott FA, 2019, EXP PARASITOL, V200, P37, DOI 10.1016/j.exppara.2019.03.014
  28. World Health Organization, 2021, END NEGL ATT SUST DE
  29. World Health Organization, 2022, SOIL TRANSM HELM INF