Ecstasy induces reactive oxygen species, kidney water absorption and rhabdomyolysis in normal rats. Effect of N-acetylcysteine and Allopurinol in oxidative stress and muscle fiber damage

Carregando...
Imagem de Miniatura
Citações na Scopus
8
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Citação
PLOS ONE, v.12, n.7, article ID e0179199, 12p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Ecstasy (Ec) use produces hyperthermia, excessive sweating, intense thirst, an inappropriate antidiuretic hormone secretion (SIADH) and a multisystemic toxicity due to oxidative stress (OS). Intense thirst induces high intake of pure water, which associated with SIADH, usually develops into acute hyponatremia (Hn). As Hn is induced rapidly, experiments to check if Ec acted directly on the Inner Medullary Collecting Ducts (IMCD) of rats were conducted. Rhabdomyolysis and OS were also studied because Ec is known to induce Reactive Oxygen Species (ROS) and tissue damage. To decrease OS, the antioxidant inhibitors N-acetylcysteine (NAC) and Allopurinol (Allo) were used. Methods Rats were maintained on a lithium (Li) diet to block the Vasopressin action before Ec innoculation. AQP2 (Aquaporin 2), ENaC (Epitheliun Sodium Channel) and NKCC2 (Sodium, Potassium, 2 Chloride) expression were determined by Western Blot in isolated IMCDs. The TBARS (thiobarbituric acid reactive substances) and GSH (reduced form of Glutathione) were determined in the Ec group (6 rats injected with Ec-10mg/kg), in Ec+NAC groups (NAC 100mg/Kg/bw i.p.) and in Allo+Ec groups (Allo 50mg/Kg/i.p.). Results Enhanced AQP2 expression revealed that Ec increased water transporter expression, decreased by Li diet, but the expression of the tubular transporters did not change. The Ec, Ec+NAC and Allo+Ec results showed that Ec increased TBARS and decreased GSH, showing evidence of ROS occurrence, which was protected by NAC and Allo. Rhabdomyolysis was only protected by Allo. Conclusion Results showed that Ec induced an increase in AQP2 expression, evidencing another mechanism that might contribute to cause rapid hyponatremia. In addition, they showed that NAC and Allo protected against OS, but only Allo decreased rhabdomyolysis and hyperthermia.
Palavras-chave
Referências
  1. Asl SS, 2015, METAB BRAIN DIS, V30, P171, DOI 10.1007/s11011-014-9598-0
  2. Bosch X, 2009, NEW ENGL J MED, V361, P62, DOI 10.1056/NEJMra0801327
  3. Budisavljevic MN, 2003, AM J MED SCI, V326, P89, DOI 10.1097/00000441-200308000-00006
  4. BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5
  5. Butler R, 2000, HYPERTENSION, V35, P746
  6. Campbell GA, 2008, CLIN J AM SOC NEPHRO, V3, P1852, DOI 10.2215/CJN.02080508
  7. Carvalho M, 2002, ARCH TOXICOL, V76, P581, DOI 10.1007/s00204-002-0381-3
  8. Carvalho M, 2012, ARCH TOXICOL, V86, P1167, DOI 10.1007/s00204-012-0815-5
  9. da Silva DD, 2014, J APPL TOXICOL, V34, P637, DOI 10.1002/jat.2889
  10. DIAZ PT, 1994, J APPL PHYSIOL, V77, P2434
  11. Eede HV, 2009, J EMERGENCY MED, V42, P655
  12. El-Bassossy HM, 2015, J TRANSL MED, V3, P82
  13. Fiaschi AI, 2010, CURR PHARM BIOTECHNO, V11, P444
  14. Ghatol A, 2012, J EMERGENCY MED, V42, P137
  15. Gois PHF, 2016, FREE RADICAL BIO MED, V101, P176, DOI 10.1016/j.freeradbiomed.2016.10.012
  16. Gomez-Cabrera MC, 2003, JAMA-J AM MED ASSOC, V289, P2503, DOI 10.1001/jama.289.19.2503-b
  17. Halpern P, 2011, HUM EXP TOXICOL, V30, P259, DOI 10.1177/0960327110370984
  18. Henry JA, 1998, LANCET, V351, P1784, DOI 10.1016/S0140-6736(05)78744-4
  19. Hoo GWS, 2012, J INTENSIVE CARE MED, V28, P259
  20. Kaandorp JJ, 2014, ARCH DIS CHILD-FETAL, V99, pF144, DOI 10.1136/archdischild-2013-304876
  21. Kalantar-Zadeh K, 2006, NAT CLIN PRACT NEPHR, V2, P283, DOI 10.1038/ncpneph0167
  22. Katz A, 2014, PFLUG ARCH EUR J PHY, V466, P577, DOI 10.1007/s00424-013-1331-z
  23. Keltz Eran, 2013, Muscles Ligaments Tendons J, V3, P303
  24. Kunsdorf-Wnuk Anna, 2005, Pol Merkur Lekarski, V18, P436
  25. Kwon C, 2003, PEDIATR NEPHROL, V18, P820, DOI 10.1007/s00467-003-1164-7
  26. Lin PY, 2011, PEDIATR CRIT CARE ME, V12, pE424, DOI 10.1097/PCC.0b013e3182192c8d
  27. Lourenco TC, 2013, J PHARMACEUT BIOMED, V73, P13, DOI 10.1016/j.jpba.2012.01.025
  28. Matthai SM, 1996, BRIT MED J, V312, P1359
  29. OHKAWA H, 1979, ANAL BIOCHEM, V95, P351, DOI 10.1016/0003-2697(79)90738-3
  30. Pacher P, 2006, PHARMACOL REV, V58, P87, DOI 10.1124/pr.58.1.6
  31. Parrott AC, 2012, DRUG ALCOHOL DEPEN, V121, P1, DOI 10.1016/j.drugalcdep.2011.08.012
  32. Paula VF, 2009, NEUROIMMUNOMODULAT, V16, P191
  33. Pendergraft WF, 2014, CLIN J AM SOC NEPHRO, V9, P1996, DOI 10.2215/CJN.00360114
  34. Ramaley C, 2014, J ANAL TOXICOL, V38, P249, DOI 10.1093/jat/bku023
  35. SCREATON GR, 1992, LANCET, V339, P677, DOI 10.1016/0140-6736(92)90834-P
  36. SEDLAK J, 1968, ANAL BIOCHEM, V25, P192, DOI 10.1016/0003-2697(68)90092-4
  37. Song BJ, 2010, CURR PHARM BIOTECHNO, V11, P434
  38. Sprague JE, 2005, CRIT CARE MED, V33, P1311, DOI 10.1097/01.CCM.0000165969.29002
  39. Torres A. P, 2015, OCHSNER J, V15, P58
  40. Traub SJ, 2002, J URBAN HEALTH, V79, P549, DOI 10.1093/jurban/79.4.549
  41. Vogt BL, 2007, BIOCHEM PHARMACOL, V73, P1613, DOI 10.1016/j.bcp.2007.01.033
  42. Wolff K, 2006, J PSYCHOPHARMACOL, V20, P400, DOI 10.1177/0269881106061514