Expanding the phenotypic spectrum of CLCN2-related leucoencephalopathy and ataxia

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
NOBREGA, Paulo R.
PAIVA, Anderson R. B. de
SOUZA, Jorge Luiz B. de
LIMA, Pedro Lucas G. S. B.
SILVA, Delson Jose da
BORGES, Viviennee K.
DIAS, Daniel A.
BISPO, Luciana M.
Citação
BRAIN COMMUNICATIONS, v.6, n.1, article ID fcad273, 11p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Mutations in CLCN2 are a rare cause of autosomal recessive leucoencephalopathy with ataxia and specific imaging abnormalities. Very few cases have been reported to date. Here, we describe the clinical and imaging phenotype of 12 additional CLCN2 patients and expand the known phenotypic spectrum of this disorder. Informed consent was obtained for all patients. Patients underwent either whole-exome sequencing or focused/panel-based sequencing to identify variants. Twelve patients with biallelic CLCN2 variants are described. This includes three novel likely pathogenic missense variants. All patients demonstrated typical MRI changes, including hyperintensity on T2-weighted images in the posterior limbs of the internal capsules, midbrain cerebral peduncles, middle cerebellar peduncles and cerebral white matter. Clinical features included a variable combination of ataxia, headache, spasticity, seizures and other symptoms with a broad range of age of onset. This report is now the largest case series of patients with CLCN2-related leucoencephalopathy and reinforces the finding that, although the imaging appearance is uniform, the phenotypic expression of this disorder is highly heterogeneous. Our findings expand the phenotypic spectrum of CLCN2-related leucoencephalopathy by adding prominent seizures, severe spastic paraplegia and developmental delay. Nobrega et al. describe 12 additional CLCN2 leucoencephalopathy patients expanding the phenotypic spectrum by adding prominent seizures, severe spastic paraplegia and developmental delay. All patients demonstrated typical MRI changes. They found three novel missense variants. This report is now the largest case series of patients with CLCN2-related leucoencephalopathy. Graphical abstract
Palavras-chave
ClC-2 chloride channels, leucoencephalopathies, MRI, ataxia
Referências
  1. Almasoudi W, 2020, PARKINSONISM RELAT D, V79, pE112
  2. Almasoudi W, 2023, CLIN PARKINSON RELAT, V8, DOI 10.1016/j.prdoa.2023.100189
  3. Amendola LM, 2015, GENOME RES, V25, P305, DOI 10.1101/gr.183483.114
  4. Blanz J, 2007, J NEUROSCI, V27, P6581, DOI 10.1523/JNEUROSCI.0338-07.2007
  5. Combi R, 2009, BRAIN RES BULL, V79, P89, DOI 10.1016/j.brainresbull.2009.01.008
  6. Cooper GM, 2005, GENOME RES, V15, P901, DOI 10.1101/gr.3577405
  7. Cukier HN, 2014, MOL AUTISM, V5, DOI 10.1186/2040-2392-5-1
  8. D'Agostino D, 2004, NEUROLOGY, V63, P1500
  9. Depienne C, 2013, LANCET NEUROL, V12, P659, DOI 10.1016/S1474-4422(13)70053-X
  10. Di Bella D, 2014, NEUROLOGY, V83, P1217, DOI 10.1212/WNL.0000000000000812
  11. Everett K, 2007, EPILEPSY RES, V75, P145, DOI 10.1016/j.eplepsyres.2007.05.004
  12. Gaitán-Peñas H, 2017, J PHYSIOL-LONDON, V595, P6993, DOI 10.1113/JP275087
  13. Giorgio E, 2017, J NEUROL NEUROSUR PS, V88, P895, DOI 10.1136/jnnp-2016-315525
  14. Göppner C, 2021, J BIOL CHEM, V296, DOI 10.1074/jbc.RA120.016031
  15. Guo ZX, 2019, BMC NEUROL, V19, DOI 10.1186/s12883-019-1390-7
  16. Hanagasi HA, 2015, PARKINSONISM RELAT D, V21, P544, DOI 10.1016/j.parkreldis.2015.02.013
  17. Hoshi M, 2019, BRAIN DEV-JPN, V41, P101, DOI 10.1016/j.braindev.2018.07.011
  18. Kleefuss-Lie A, 2009, NAT GENET, V41, P954, DOI 10.1038/ng0909-954
  19. Landrum MJ, 2016, NUCLEIC ACIDS RES, V44, pD862, DOI 10.1093/nar/gkv1222
  20. Leegwater PAJ, 2001, AM J HUM GENET, V68, P831, DOI 10.1086/319519
  21. Lek M, 2016, NATURE, V536, P285, DOI 10.1038/nature19057
  22. López-Hernández T, 2011, AM J HUM GENET, V88, P422, DOI 10.1016/j.ajhg.2011.02.009
  23. Min R., GeneReviews®
  24. Nandana J, 2023, NEUROL SCI, V44, P1083, DOI 10.1007/s10072-022-06464-3
  25. Ngo KJ, 2020, HUM MUTAT, V41, P487, DOI 10.1002/humu.23946
  26. Niemeyer MI, 2010, NAT GENET, V42, P3, DOI 10.1038/ng0110-3
  27. Ozaki A, 2020, BRAIN DEV-JPN, V42, P462, DOI 10.1016/j.braindev.2020.02.008
  28. Passchier EMJ, 2023, BRAIN, V146, P3444, DOI 10.1093/brain/awad146
  29. Planells-Cases R, 2009, BBA-MOL BASIS DIS, V1792, P173, DOI 10.1016/j.bbadis.2009.02.002
  30. Quang D, 2015, BIOINFORMATICS, V31, P761, DOI 10.1093/bioinformatics/btu703
  31. Raymond GV, 2010, J NEUROL SCI, V290, P70, DOI 10.1016/j.jns.2009.11.005
  32. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  33. Saint-Martin C, 2009, HUM MUTAT, V30, P397, DOI 10.1002/humu.20876
  34. Sankaran BP, 2020, J CHILD NEUROL, V35, P433, DOI 10.1177/0883073820904294
  35. Santos GT, 2013, AM J NEURORADIOL, V34, P310, DOI 10.3174/ajnr.A3198
  36. Stogmann E, 2006, NEUROGENETICS, V7, P265, DOI 10.1007/s10048-006-0057-x
  37. van der Knaap MS, 1998, NEUROLOGY, V51, P540, DOI 10.1212/WNL.51.2.540
  38. Zeydan B, 2017, EUR NEUROL, V78, P125, DOI 10.1159/000478089