New Allele-Specific Oligonucleotide (ASO) amplifications for Toxoplasma gondii rop18 allele typing: Analysis of 86 human congenital infections in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
ACTA TROPICA, v.247, article ID 107011, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study aimed to detect and differentiate Toxoplasma gondii by the allele typing of its polymorphic rop18 gene. For this purpose, a novel genotyping system using allele-specific oligonucleotides (ASOs) was designed, consisting of three ASO pairs. The first and third pairs specifically amplify rop18 allele I and allele III, while the second pair amplify both allele I and II. Genomic DNA from 86 congenital infections was analyzed by ASO-PCRs, successfully typing 82 (95.35%) samples. The remaining 4 samples (4.65%) required sequencing and single nucleotide polymorphism (SNP) analysis of the amplification products. The distribution of samples according to rop18 alleles was: 39.5% of allele III, 38.4% of allele II, 19.8% of mixed rop18 alleles (I/III or II/III), and 2.3% of allele I. The six severely compromised infants exhibited the highest parasite load levels and were infected during the first and early second trimesters of pregnancy. Among these cases, two were associated with rop18 allele I parasites, two with mixed rop18 alleles (I/III), one with allele II, and one with allele III parasites. In conclusion, all severe cases of congenital toxoplasmosis were infected during early pregnancy, but they were not exclusively associated with rop18 allele I parasites, as observed in murine toxoplasmosis. Furthermore, nearly one-fifth of parasites were non-archetypal, exhibiting more than one rop18 allele, indicating a higher genetic diversity of Toxoplasma gondii in this South American sample. Overall, a robust T. gondii rop18 allele typing was developed and suggested that congenital toxoplasmosis in humans involves complex mechanisms beyond the parasite genotype.
Palavras-chave
Congenital toxoplasmosis, Rhoptry, Virulence markers, Genotyping, Allele-Specific Oligonucleotides, (ASO)
Referências
  1. Ajzenberg D, 2015, FUTURE MICROBIOL, V10, P689, DOI [10.2217/FMB.15.23, 10.2217/fmb.15.23]
  2. Aspinall TV, 2003, INT J PARASITOL, V33, P97, DOI 10.1016/S0020-7519(02)00230-8
  3. de Melo RPB, 2020, PARASITOL RES, V119, P2727, DOI 10.1007/s00436-020-06746-9
  4. Bernstein M, 2021, PARASITOL INT, V83, DOI 10.1016/j.parint.2021.102328
  5. Bollani L, 2022, FRONT PEDIATR, V10, DOI 10.3389/fped.2022.894573
  6. Bradley PJ, 2007, CURR OPIN MICROBIOL, V10, P582, DOI 10.1016/j.mib.2007.09.013
  7. Brazilian Ministry of Health, 2012, Institutional publication, V5th, P115
  8. Carme B, 2002, J CLIN MICROBIOL, V40, P4037, DOI 10.1128/JCM.40.11.4037-4044.2002
  9. dos Santos EH, 2020, PARASITOL INT, V76, DOI 10.1016/j.parint.2020.102069
  10. Dubey JP, 2007, VET PARASITOL, V145, P352, DOI 10.1016/j.vetpar.2006.12.016
  11. Dubey JP, 2014, VET PARASITOL, V200, P74, DOI 10.1016/j.vetpar.2013.11.001
  12. Dunay IR, 2018, CLIN MICROBIOL REV, V31, DOI 10.1128/CMR.00057-17
  13. Fleckenstein MC, 2012, PLOS BIOL, V10, DOI 10.1371/journal.pbio.1001358
  14. Galal L, 2018, TRENDS PARASITOL, V34, P140, DOI 10.1016/j.pt.2017.10.010
  15. Hassan MA, 2019, INT J PARASITOL, V49, P63, DOI 10.1016/j.ijpara.2018.08.007
  16. Jensen KDC, 2015, MBIO, V6, DOI 10.1128/mBio.02280-14
  17. Khan A, 2007, P NATL ACAD SCI USA, V104, P14872, DOI 10.1073/pnas.0702356104
  18. Khan A, 2011, MBIO, V2, DOI 10.1128/mBio.00228-11
  19. Khan A, 2009, PLOS GENET, V5, DOI 10.1371/journal.pgen.1000404
  20. Kieffer F, 2011, PEDIATR INFECT DIS J, V30, P813, DOI 10.1097/INF.0b013e31821b8dfe
  21. Lorenzi H, 2016, NAT COMMUN, V7, DOI 10.1038/ncomms10147
  22. Pardini L, 2019, PARASITOL INT, V68, P48, DOI 10.1016/j.parint.2018.10.002
  23. Rico-Torres CP, 2016, EUR J CLIN MICROBIOL, V35, P1079, DOI 10.1007/s10096-016-2656-2
  24. Sanchez V, 2014, PARASITOL INT, V63, P463, DOI 10.1016/j.parint.2013.10.012
  25. Saraf P, 2017, EXP PARASITOL, V174, P25, DOI 10.1016/j.exppara.2017.01.009
  26. Shimokawa PT, 2016, VIRULENCE, V7, P456, DOI 10.1080/21505594.2016.1150401
  27. Shwab EK, 2016, INT J PARASITOL, V46, P141, DOI 10.1016/j.ijpara.2015.10.005
  28. Su CL, 2002, P NATL ACAD SCI USA, V99, P10753, DOI 10.1073/pnas.172117099
  29. Taylor S, 2006, SCIENCE, V314, P1776, DOI 10.1126/science.1133643
  30. Vilares A, 2017, PARASITOL RES, V116, P979, DOI 10.1007/s00436-017-5374-5
  31. Xiao J, 2015, ACTA PHYSIOL, V213, P828, DOI 10.1111/apha.12458
  32. Yamamoto L, 2017, OBSTET GYNECOL, V130, P335, DOI 10.1097/AOG.0000000000002131