Mutations in Fibronectin Cause a Subtype of Spondylometaphyseal Dysplasia with ""Corner Fractures''

Imagem de Miniatura
Citações na Scopus
35
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
CELL PRESS
Autores
LEE, Chae Syng
FU, He
BARATANG, Nissan
ROUSSEAU, Justine
KUMRA, Heena
SUTTON, V. Reid
NICETA, Marcello
CIOLFI, Andrea
Citação
AMERICAN JOURNAL OF HUMAN GENETICS, v.101, n.5, p.815-823, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Fibronectin is a master organizer of extracellular matrices (ECMs) and promotes the assembly of collagens, fibrillin-1, and other proteins. It is also known to play roles in skeletal tissues through its secretion by osteoblasts, chondrocytes, and mesenchymal cells. Spondylo-metaphyseal dysplasias (SMDs) comprise a diverse group of skeletal dysplasias and often manifest as short stature, growth-plate irregularities, and vertebral anomalies, such as scoliosis. By comparing the exomes of individuals with SMD with the radiographic appearance of ""corner fractures'' at metaphyses, we identified three individuals with fibronectin (FN1) variants affecting highly conserved residues. Furthermore, using matching tools and the SkelDys emailing list, we identified other individuals with de novo FN1 variants and a similar phenotype. The severe scoliosis in most individuals and rare developmental coxa vara distinguish individuals with FN1 mutations from those with classical Sutcliffe-type SMD. To study functional consequences of these FN1 mutations on the protein level, we introduced three disease-associated missense variants (p.Cys87Phe [c.260G>T], p.Tyr240Asp [c.718T>G], and p.Cys260Gly [c.778T>G]) into a recombinant secreted N-terminal 70 kDa fragment (rF70K) and the full-length fibronectin (rFN). The wild-type rF70K and rFN were secreted into the culture medium, whereas all mutant proteins were either not secreted or secreted at significantly lower amounts. Immunofluorescence analysis demonstrated increased intracellular retention of the mutant proteins. In summary, FN1 mutations that cause defective fibronectin secretion are found in SMD, and we thus provide additional evidence for a critical function of fibronectin in cartilage and bone.
Palavras-chave
Referências
  1. BARON M, 1990, NATURE, V345, P642, DOI 10.1038/345642a0
  2. Baydar DE, 2013, AM J KIDNEY DIS, V61, P514, DOI 10.1053/j.ajkd.2012.08.050
  3. Bingham RJ, 2008, P NATL ACAD SCI USA, V105, P12254, DOI 10.1073/pnas.0803556105
  4. Castelletti F, 2008, P NATL ACAD SCI USA, V105, P2538, DOI 10.1073/pnas.0707730105
  5. Currarino G, 2000, PEDIATR RADIOL, V30, P14, DOI 10.1007/s002470050005
  6. Dallas SL, 2005, J BIOL CHEM, V280, P18871, DOI 10.1074/jbc.M410762200
  7. Duetting T, 1998, AM J MED GENET, V78, P61, DOI 10.1002/(SICI)1096-8628(19980616)78:1<61::AID-AJMG13>3.0.CO;2-M
  8. Emsley P, 2004, ACTA CRYSTALLOGR D, V60, P2126, DOI 10.1107/S0907444904019158
  9. FOX JW, 1991, EMBO J, V10, P3137
  10. Hashimoto Y, 2003, AM J PATHOL, V163, P101, DOI 10.1016/S0002-9440(10)63634-6
  11. Hecht JT, 1998, MATRIX BIOL, V17, P625, DOI 10.1016/S0945-053X(98)90113-5
  12. Hubmacher D, 2011, BIOCHEMISTRY-US, V50, P5322, DOI 10.1021/bi200183z
  13. Keene DR, 1997, J HISTOCHEM CYTOCHEM, V45, P1069
  14. Kirschner R, 2011, J BIOL CHEM, V286, P32810, DOI 10.1074/jbc.M111.221804
  15. Kozlowski K., 1984, GAMUT INDEX SKELETAL
  16. LANGER LO, 1990, RADIOLOGY, V175, P761
  17. Lin GQ, 2002, J BIOL CHEM, V277, P50795, DOI 10.1074/jbc.M210611200
  18. Machol K, 2017, AM J MED GENET A, V173, P733, DOI 10.1002/ajmg.a.38059
  19. Maddox BK, 1997, J BIOL CHEM, V272, P30993, DOI 10.1074/jbc.272.49.30993
  20. Mckee KK, 2007, J BIOL CHEM, V282, P21437, DOI 10.1074/jbc.M702963200
  21. Mosher D.F., 2006, THROMB VASC BIOL, V26, P1193
  22. Ohtsubo H, 2016, PEDIATR NEPHROL, V31, P1459, DOI 10.1007/s00467-016-3368-7
  23. Pankov R, 2002, J CELL SCI, V115, P3861, DOI 10.1242/jcs.00059
  24. Pieper U, 2011, NUCLEIC ACIDS RES, V39, pD465, DOI 10.1093/nar/gkq1091
  25. Sabatier L, 2009, MOL BIOL CELL, V20, P846, DOI 10.1091/mbc.E08-08-0830
  26. Schwarz-Linek U, 2003, NATURE, V423, P177, DOI 10.1038/nature0189
  27. Singh P, 2012, J CELL SCI, V125, P3703, DOI 10.1242/jcs.095786
  28. Singh P, 2010, ANNU REV CELL DEV BI, V26, P397, DOI 10.1146/annurev-cellbio-100109-104020
  29. Sobreira Nara, 2015, Hum Mutat, V36, P928, DOI 10.1002/humu.22844
  30. Sottile J, 2002, MOL BIOL CELL, V13, P3546, DOI 10.1091/mbc.E02-01-0048
  31. SOTTILE J, 1991, J BIOL CHEM, V266, P12840
  32. SUTCLIFF.J, 1966, ANN RADIOL-RADIOL CL, V9, pR215
  33. Sutton VR, 2005, AM J MED GENET A, V133A, P209, DOI 10.1002/ajmg.a.30567
  34. Vakonakis I, 2007, EMBO J, V26, P2575, DOI 10.1038/sj.emboj.7601694
  35. Walter K, 2007, AM J MED GENET A, V143A, P161, DOI 10.1002/ajmg.a.31516