Gastrointestinal Transcriptomic Response of Metabolic Vitamin B12 Pathways in Roux-en-Y Gastric Bypass

Carregando...
Imagem de Miniatura
Citações na Scopus
18
Tipo de produção
article
Data de publicação
2017
Título da Revista
ISSN da Revista
Título do Volume
Editora
NATURE PUBLISHING GROUP
Citação
CLINICAL AND TRANSLATIONAL GASTROENTEROLOGY, v.8, article ID e212, 9p, 2017
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
OBJECTIVES: Vitamin B12 (B12) deficiency after Roux-en-Y gastric bypass (RYGB) is highly prevalent and may contribute to postoperative complications. Decreased production of intrinsic factor owing to gastric fundus removal is thought to have a major role, but other components of B12 metabolism may also be affected. We evaluated changes in the expression levels of multiple B12 pathway-encoding genes in gastrointestinal (GI) tissues to evaluate the potential roles in contributing to post-RYGB B12 deficiency. METHODS: During double-balloon enteroscopy, serial GI biopsies were collected from 20 obese women (age, 46.9 +/- 6.2 years; body mass index, 46.5 +/- 5.3 kg/m(2)) with adult-onset type 2 diabetes (fasting plasma glucose >= 126 mg/dl; hemoglobin A1c >= 6.5%) before and, at the same site, 3 months after RYGB. Gene expression levels were assessed by the Affymetrix Human GeneChip 1.0 ST microarray. Findings were validated by real-time quantitative PCR (RT-qPCR). RESULTS: Gene expression levels with significant changes (P <= 0.05) included: transcobalamin I (TCN1) in remnant (-1.914-fold) and excluded (-1.985-fold) gastric regions; gastric intrinsic factor (GIF) in duodenum (-0.725-fold); and cubilin (CUBN) in duodenum (+0.982-fold), jejunum (+1.311-fold), and ileum (+0.685-fold). Validation by RT-qPCR confirmed (P <= 0.05) observed changes for TCN1 in the remnant gastric region (-0.132-fold) and CUBN in jejunum (+2.833-fold). CONCLUSIONS: RYGB affects multiple pathway-encoding genes that may be associated with postoperative B12 deficiency. Decreased TCN1 levels seem to be the main contributing factor. Increased CUBN levels suggest an adaptive genetic reprogramming of intestinal tissue aiming to compensate for impaired intestinal B12 delivery.
Palavras-chave
Referências
  1. Alexandrou A, 2014, SURG OBES RELAT DIS, V10, P262, DOI 10.1016/j.soard.2013.07.014
  2. ALLEN RH, 1978, J CLIN INVEST, V61, P47, DOI 10.1172/JCI108924
  3. BENJAMINI Y, 1995, J ROY STAT SOC B MET, V57, P289
  4. BERO T, 1982, ACTA MED HUNG, V39, P79
  5. Bigler J, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0052242
  6. Blackburn GL, 2005, NAT CLIN PRACT CARD, V2, P585, DOI 10.1038/ncpcardio0349
  7. Bloomberg RD, 2005, OBES SURG, V15, P145, DOI 10.1381/0960892053268264
  8. Blume CA, 2012, OBES SURG, V22, P1676, DOI 10.1007/s11695-012-0696-y
  9. Breitling R, 2004, FEBS LETT, V573, P83, DOI 10.1016/j.febslet.2004.07.055
  10. Bueno DF, 2011, STEM CELL REV REP, V7, P446, DOI 10.1007/s12015-010-9197-3
  11. Bussolati G, 2011, PLOS ONE, V6, DOI 10.1371/journal.pone.0021043
  12. Butler CC, 2006, FAM PRACT, V23, P279, DOI 10.1093/fampra/cml008
  13. Christensen EI, 2002, NAT REV MOL CELL BIO, V3, P258, DOI 10.1038/nrm778
  14. Core Team, 2015, R LANG ENV STAT COMP
  15. Dogan K, 2014, MEDICINE, V93, DOI 10.1097/MD.0000000000000169
  16. Fleige Simone, 2006, Molecular Aspects of Medicine, V27, P126, DOI 10.1016/j.mam.2005.12.003
  17. Griesi-Oliveira K, 2015, MOL PSYCHIATR, V20, P1350, DOI 10.1038/mp.2014.141
  18. Gudzune KA, 2013, OBES SURG, V23, P1581, DOI 10.1007/s11695-013-0919-x
  19. Hanna Susan, 2009, Prim Care Companion J Clin Psychiatry, V11, P269, DOI 10.4088/PCC.08l00707
  20. Howard TA, 1996, J ANAT, V189, P303
  21. Irizarry RA, 2003, NUCLEIC ACIDS RES, V31, DOI 10.1093/nar/gng015
  22. Johnson WE, 2007, BIOSTATISTICS, V8, P118, DOI 10.1093/biostatistics/kxj037
  23. Kalarchian MA, 2014, SURG OBES RELAT DIS, V10, P1202, DOI 10.1016/j.soard.2014.08.007
  24. KITTANG E, 1987, SCAND J GASTROENTERO, V22, P1031, DOI 10.3109/00365528708991952
  25. Kwon Y, 2014, SURG OBES RELAT DIS, V10, P589, DOI 10.1016/j.soard.2013.12.005
  26. Manning S, 2015, J CLIN INVEST, V125, P939, DOI 10.1172/JCI76305
  27. McLean E, 2008, FOOD NUTR BULL, V29, pS38
  28. Mechanick JI, 2013, OBESITY, V21, pS1, DOI 10.1002/oby.20461
  29. Moore CE, 2015, OBES SURG, V25, P694, DOI 10.1007/s11695-014-1441-5
  30. Morey JS, 2006, BIOL PROCED ONLINE, V8, P175, DOI 10.1251/bpo126
  31. Nielsen MJ, 2012, NAT REV GASTRO HEPAT, V9, P345, DOI 10.1038/nrgastro.2012.76
  32. Pellegrino R, 2012, PHYSIOL GENOMICS, V44, P1003, DOI 10.1152/physiolgenomics.00058.2012
  33. Rhode BM, 1996, AM J CLIN NUTR, V63, P103
  34. Rubino F, 2010, ANNU REV MED, V61, P393, DOI 10.1146/annurev.med.051308.105148
  35. Saliba J, 2009, CURR OPIN CLIN NUTR, V12, P515, DOI 10.1097/MCO.0b013e32832e1b14
  36. SCHJONSBY H, 1989, GUT, V30, P1686, DOI 10.1136/gut.30.12.1686
  37. Shao J, 2011, DIGEST DIS SCI, V56, P3209, DOI 10.1007/s10620-011-1738-3
  38. SMITH CD, 1993, ANN SURG, V218, P91, DOI 10.1097/00000658-199307000-00014
  39. St Laurent G, 2013, METHODS, V63, P18, DOI 10.1016/j.ymeth.2013.03.027
  40. Ukleja A, 2004, J CLIN GASTROENTEROL, V38, P312, DOI 10.1097/00004836-200404000-00004
  41. Wex T, 2003, CLIN CHEM LAB MED, V41, P1033, DOI 10.1515/CCLM.2003.159
  42. Wilson JB, 2010, INSULIN, V5, P46