Melatonin Regulates the Daily Levels of Plasma Amino Acids, Acylcarnitines, Biogenic Amines, Sphingomyelins, and Hexoses in a Xenograft Model of Triple Negative Breast Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
JUNIOR, Rubens Paula
CHUFFA, Luiz Gustavo de Almeida
SIMAO, Vinicius Augusto
SONEHARA, Nathalia Martins
REITER, Russel J.
ZUCCARI, Debora Aparecida Pires de Campos
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.23, n.16, article ID 9105, 19p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Metabolic dysregulation as a reflection of specific metabolite production and its utilization is a common feature of many human neoplasms. Melatonin, an indoleamine that is highly available during darkness, has a variety of metabolic functions in solid tumors. Because plasma metabolites undergo circadian changes, we investigated the role of melatonin on the profile of amino acids (AAs), biogenic amines, carnitines, sphingolipids, and hexoses present in the plasma of mice bearing xenograft triple negative breast cancer (MDA-MB-231 cells) over 24 h. Plasma concentrations of nine AAs were reduced by melatonin, especially during the light phase, with a profile closer to that of non-breast cancer (BC) animals. With respect to acylcarnitine levels, melatonin reduced 12 out of 24 molecules in BC-bearing animals compared to their controls, especially at 06:00 h and 15:00 h. Importantly, melatonin reduced the concentrations of asymmetric dimethylarginine, carnosine, histamine, kynurenine, methionine sulfoxide, putrescine, spermidine, spermine, and symmetric dimethylarginine, which are associated with the BC metabolite sets. Melatonin also led to reduced levels of sphingomyelins and hexoses, which showed distinct daily variations over 24 h. These results highlight the role of melatonin in controlling the levels of plasma metabolites in human BC xenografts, which may impact cancer bioenergetics, in addition to emphasizing the need for a more accurate examination of its metabolomic changes at different time points.
Palavras-chave
breast cancer, melatonin, metabolomics, xenografted mice, plasma metabolites, circadian profile
Referências
  1. Agostinelli E, 2007, AMINO ACIDS, V33, P175, DOI 10.1007/s00726-007-0510-7
  2. Ahabrach H, 2021, ENDOCR METAB IMMUNE, V21, P1869, DOI 10.2174/1871530320666201201110807
  3. Anderson G, 2019, BIOCHEM PHARMACOL, V168, P259, DOI 10.1016/j.bcp.2019.07.014
  4. Beger RD, 2013, METABOLITES, V3, P552, DOI 10.3390/metabo3030552
  5. Blask DE, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0102776
  6. Blask DE, 2005, CANCER RES, V65, P11174, DOI 10.1158/0008-5472.CAN-05-1945
  7. Borin TF, 2016, J PINEAL RES, V60, P3, DOI 10.1111/jpi.12270
  8. Chuffa LGD, 2020, J PINEAL RES, V69, DOI 10.1111/jpi.12693
  9. Cipolla-Neto J, 2018, ENDOCR REV, V39, P990, DOI 10.1210/er.2018-00084
  10. Colombo C, 1999, PSYCHIAT RES, V86, P267, DOI 10.1016/S0165-1781(99)00036-0
  11. Colombo J, 2021, CANCERS, V13, DOI 10.3390/cancers13205233
  12. Cui L, 2021, J PINEAL RES, V71, DOI 10.1111/jpi.12767
  13. Currie E, 2013, CELL METAB, V18, P153, DOI 10.1016/j.cmet.2013.05.017
  14. Dallmann R, 2012, P NATL ACAD SCI USA, V109, P2625, DOI 10.1073/pnas.1114410109
  15. Chuffa LGD, 2019, CELL MOL LIFE SCI, V76, P837, DOI 10.1007/s00018-018-2963-0
  16. DeBerardinis RJ, 2012, CELL, V148, P1132, DOI 10.1016/j.cell.2012.02.032
  17. Delage B, 2010, INT J CANCER, V126, P2762, DOI 10.1002/ijc.25202
  18. Don SSL, 2019, CELL CYCLE, V18, P2447, DOI 10.1080/15384101.2019.1648957
  19. Dossus L, 2021, GYNECOL ONCOL, V162, P475, DOI 10.1016/j.ygyno.2021.06.001
  20. Eniu DT, 2019, SCAND J CLIN LAB INV, V79, P17, DOI 10.1080/00365513.2018.1542541
  21. FALKSON G, 1990, ONCOLOGY-BASEL, V47, P401
  22. Fouad YA, 2017, AM J CANCER RES, V7, P1016
  23. Gong Y, 2021, CELL METAB, V33, P51, DOI 10.1016/j.cmet.2020.10.012
  24. Gonzalez A, 2021, CANCERS, V13, DOI 10.3390/cancers13133263
  25. Govindarajah N, 2019, CRIT REV ONCOL HEMAT, V138, P104, DOI 10.1016/j.critrevonc.2019.03.018
  26. Gowda GAN, 2008, EXPERT REV MOL DIAGN, V8, P617, DOI 10.1586/14737159.8.5.617
  27. Gu Y, 2015, J TRANSL MED, V13, DOI 10.1186/s12967-015-0408-1
  28. Gutierrez-Monreal MA, 2016, CHRONOBIOL INT, V33, P392, DOI 10.3109/07420528.2016.1152976
  29. Harbeck N, 2019, NAT REV DIS PRIMERS, V5, DOI [10.1038/s41572-019-0111-2, 10.1038/s41572-019-0122-z]
  30. Hasan M, 2020, BREAST CANCER-BASIC, V14, DOI 10.1177/1178223420924634
  31. Hasan M, 2019, MOL PHARMACOL, V96, P272, DOI 10.1124/mol.119.116202
  32. Heiden MGV, 2009, SCIENCE, V324, P1029, DOI 10.1126/science.1160809
  33. Hevia D, 2017, INT J MOL SCI, V18, DOI 10.3390/ijms18081620
  34. Hill SM, 2015, ENDOCR-RELAT CANCER, V22, pR183, DOI 10.1530/ERC-15-0030
  35. His M, 2019, BMC MED, V17, DOI 10.1186/s12916-019-1408-4
  36. Jardim-Perassi BV, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085311
  37. Kompare M, 2008, SEMIN PEDIATR NEUROL, V15, P140, DOI 10.1016/j.spen.2008.05.008
  38. Krishnaiah SY, 2017, CELL METAB, V25, P1206, DOI 10.1016/j.cmet.2017.04.023
  39. Kubatka P, 2018, CRIT REV ONCOL HEMAT, V122, P133, DOI 10.1016/j.critrevonc.2017.12.018
  40. Laborda-Illanes A, 2021, CANCERS, V13, DOI 10.3390/cancers13133141
  41. Li HX, 2019, NAT MED, V25, P850, DOI 10.1038/s41591-019-0404-8
  42. Lin HH, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00219
  43. Lo C, 2020, J PROTEOME RES, V19, P4061, DOI 10.1021/acs.jproteome.0c00362
  44. Lu X, 2019, MOL CARCINOGEN, V58, P749, DOI 10.1002/mc.22967
  45. Mao LL, 2014, J PINEAL RES, V56, P246, DOI 10.1111/jpi.12117
  46. Maroufi NF, 2022, BREAST CANCER-TOKYO, V29, P260, DOI 10.1007/s12282-021-01310-4
  47. Medina MA, 2003, CRIT REV BIOCHEM MOL, V38, P23, DOI 10.1080/713609209
  48. Melone MAB, 2018, CELL DEATH DIS, V9, DOI 10.1038/s41419-018-0313-7
  49. Minami Y, 2009, P NATL ACAD SCI USA, V106, P9890, DOI 10.1073/pnas.0900617106
  50. Murata T, 2019, BREAST CANCER RES TR, V177, P591, DOI 10.1007/s10549-019-05330-9
  51. Nelson N, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms23031331
  52. Pang ZQ, 2021, NUCLEIC ACIDS RES, V49, pW388, DOI 10.1093/nar/gkab382
  53. Patti GJ, 2012, NAT REV MOL CELL BIO, V13, P263, DOI 10.1038/nrm3314
  54. Paula R, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-04994-6
  55. Pavlova NN, 2022, CELL METAB, V34, P355, DOI 10.1016/j.cmet.2022.01.007
  56. Poschke I, 2013, J TRANSL MED, V11, DOI 10.1186/1479-5876-11-290
  57. Qiu FM, 2014, SCI SIGNAL, V7, DOI 10.1126/scisignal.2004761
  58. Qiu YP, 2013, INT J MOL SCI, V14, P8047, DOI 10.3390/ijms14048047
  59. Reiter R, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms222212494
  60. Reiter RJ, 2021, LIFE SCI, V278, DOI 10.1016/j.lfs.2021.119597
  61. Reiter RJ, 2020, CELL MOL LIFE SCI, V77, P2527, DOI 10.1007/s00018-019-03438-1
  62. Rodriguez C, 2021, J CELL PHYSIOL, V236, P27, DOI 10.1002/jcp.29886
  63. Rossetti S, 2012, CELL CYCLE, V11, P350, DOI 10.4161/cc.11.2.18792
  64. Sonehara NM, 2019, ONCOL LETT, V17, P1635, DOI 10.3892/ol.2018.9758
  65. Starruy J, 2014, BIOINFORMATICS, V30, P1331, DOI 10.1093/bioinformatics/btt772
  66. Strand E, 2019, METABOLITES, V9, DOI 10.3390/metabo9120302
  67. Sun CL, 2020, THERANOSTICS, V10, P7070, DOI 10.7150/thno.45543
  68. Takayama T, 2016, CLIN CHIM ACTA, V452, P18, DOI 10.1016/j.cca.2015.10.032
  69. Wang YT, 2018, CELL DEATH DIFFER, V25, P733, DOI 10.1038/s41418-017-0013-3
  70. Wu D, 2022, Nan Fang Yi Ke Da Xue Xue Bao, V42, P278, DOI 10.12122/j.issn.1673-4254.2022.02.16
  71. Xiang S, 2012, BREAST CANCER-BASIC, V6, P137, DOI 10.4137/BCBCR.S9673
  72. Yuan BW, 2019, INT J CANCER, V144, P2833, DOI 10.1002/ijc.31996
  73. Yuan L, 2002, MOL CELL ENDOCRINOL, V192, P147, DOI 10.1016/S0303-7207(02)00029-1
  74. Zhang S, 2020, CELL DEATH DIS, V11, DOI 10.1038/s41419-020-03106-4
  75. Zhang T, 2021, MOLECULES, V26, DOI 10.3390/molecules26071990
  76. Zheng KH, 2019, CELL DEATH DIS, V10, DOI 10.1038/s41419-019-1303-0