Directional analysis of cardiac motion field from gated fluorodeoxyglucose PET images using the Discrete Helmholtz Hodge Decomposition

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2018
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Citação
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, v.65, Special Issue, p.69-78, 2018
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: Extract directional information related to left ventricular (LV) rotation and torsion from a 4D PET motion field using the Discrete Helmholtz Hodge Decomposition (DHHD). Materials and methods: Synthetic motion fields were created using superposition of rotational and radial field components and cardiac fields produced using optical flow from a control and patient image. These were decomposed into curl-free (CF) and divergence-free (DF) components using the DHHD. Results: Synthetic radial components were present in the CF field and synthetic rotational components in the DF field, with each retaining its center position, direction of motion and diameter after decomposition. Direction of rotation at apex and base for the control field were in opposite directions during systole, reversing during diastole. The patient DF field had little overall rotation with several small rotators. Conclusions: The decomposition of the LV motion field into directional components could assist quantification of LV torsion, but further processing stages seem necessary.
Palavras-chave
Discrete Helmholtz Hodge Decomposition, Cardiac motion field analysis, Positron emission tomography, Optical flow
Referências
  1. Buckberg GD, 2004, CIRCULATION, V110, pE333, DOI 10.1161/01.CIR.0000143625.56882.5C
  2. Burns AT, 2008, HEART, V94, P978, DOI 10.1136/hrt.2007.120410
  3. DUDA RO, 1972, COMMUN ACM, V15, P11, DOI 10.1145/361237.361242
  4. Feng CL, 2013, LECT NOTES COMPUT SC, V8149, P477, DOI 10.1007/978-3-642-40811-3_60
  5. Geleijnse M., 2013, MED SCI SERIES
  6. Gutierrez MA, 2003, J ELECTRON IMAGING, V12, P118, DOI 10.1117/1.1526104
  7. HORN BKP, 1981, ARTIF INTELL, V17, P185, DOI 10.1016/0004-3702(81)90024-2
  8. Li CM, 2010, IEEE T IMAGE PROCESS, V19, P3243, DOI 10.1109/TIP.2010.2069690
  9. Liu Y, 2016, MAGN RESON IMAGING, V34, P699, DOI 10.1016/j.mri.2015.12.027
  10. Liu Y, 2014, IEEE ENG MED BIO, P4719, DOI 10.1109/EMBC.2014.6944678
  11. Notomi Y, 2005, J AM COLL CARDIOL, V45, P2034, DOI 10.1016/j.jacc.2005.02.082
  12. Petitjean C, 2011, MED IMAGE ANAL, V15, P169, DOI 10.1016/j.media.2010.12.004
  13. Polthier K, 2000, SPRING COMP SCI, P147
  14. Reant P, 2008, J AM COLL CARDIOL, V51, P149, DOI 10.1016/j.jacc.2007.07.088
  15. Rebelo M., 2010, EURASIP J ADV SIG PR
  16. Segars WP, 2010, MED PHYS, V37, P4902, DOI 10.1118/1.3480985
  17. Sengupta Partho P, 2008, Heart Fail Clin, V4, P315, DOI 10.1016/j.hfc.2008.03.001
  18. Sims J. A., 2016, 25 C BRAS ENG BIOM F, P1167
  19. SIMS JA, 2016, 2016 COMP CARD C, V43, P493
  20. Sims John, 2015, Stud Health Technol Inform, V216, P653
  21. Tong YY, 2003, ACM T GRAPHIC, V22, P445, DOI 10.1145/882262.882290
  22. van Dalen BM, 2011, J AM SOC ECHOCARDIOG, V24, P548, DOI 10.1016/j.echo.2011.01.002
  23. Wang J., 2013, PAPILLARY MUSCLE GUI, V8668, DOI [10.1117/12.2007505, DOI 10.1117/12.2007505]
  24. Wedel A, 2011, STEREO SCENE FLOW FOR 3D MOTION ANALYSIS, P1, DOI 10.1007/978-0-85729-965-9
  25. WHO, 2017, CARD DIS CVDS FACT S
  26. Wu J, 2014, BIOMED SIGNAL PROCES, V13, P345, DOI 10.1016/j.bspc.2014.06.003
  27. Wu J, 2012, PHYS MED BIOL, V57, P7905, DOI 10.1088/0031-9155/57/23/7905