Echocardiographic Follow-up of Perinatally HIV-infected Children and Adolescents Results From a Single-center Retrospective Cohort Study in Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
LIPPINCOTT WILLIAMS & WILKINS
Citação
PEDIATRIC INFECTIOUS DISEASE JOURNAL, v.39, n.6, p.526-532, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: The effects of HIV and antiretroviral therapy on cardiovascular system of perinatally infected children throughout their development are not fully understood. Objectives: To determine the prevalence of cardiac abnormalities in a retrospective cohort of perinatally HIV-infected patients and to investigate associations between echocardiographic and clinical data during their follow-up. Methods: Review of medical records and echocardiogram reports of 148 perinatally HIV-infected patients between January 1991 and December 2015. Results: Four hundred and eighty echocardiograms were analyzed and 46 (31%) patients showed cardiac abnormalities, frequently subclinical and transient. Nadir CD4 count was higher in patients with consistently normal echocardiogram: 263 (4-1480) versus 202 (5-1746) cells/mu L, P = 0.021. Right ventricular (RV) dilation was detected in 18.9%, left ventricular (LV) dilation in 21.6%, septal hypertrophy in 12.2%, LV posterior wall hypertrophy in 6%, LV systolic dysfunction in 8% and pulmonary hypertension in 8.7% of patients. Opportunistic infections were associated with RV dilation [odds ratio (OR = 4.34; 1.78-10.53; P < 0.01)], pulmonary hypertension (OR = 8.78; 2.80-27.51; P < 0.01) and LV systolic dysfunction (OR = 5.38; 1.55-18.71; P < 0.01). Longer duration of highly active antiretroviral therapy was associated with reduced risk of LV dilation (OR = 0.91; 0.85-0.97; P < 0.01) and systolic dysfunction (OR = 0.71; 0.59-0.85; P < 0.01). Protease inhibitors use was associated with reduced risk of RV dilation (OR = 0.54; 0.30-0.97; P < 0.05), LV dilation (OR = 0.35; 0.21-0.60; P < 0.01) and LV systolic dysfunction (OR = 0.07; 0.02-0.31; P < 0.01). Higher CD4 count was associated with lower risk of LV systolic dysfunction (OR = 0.82; 0.69-0.98; P < 0.05). Conclusions: Echocardiograms identified cardiac abnormalities among children with perinatally acquired HIV infection, and data suggest that immunologic status and therapeutic strategies throughout development can influence cardiac disease burden in this population.
Palavras-chave
HIV, children, antiretroviral therapy, echocardiogram
Referências
  1. [Anonymous], 2006, WHO CHILD GROWTH STA
  2. Bloomfield GS, 2015, JACC-HEART FAIL, V3, P579, DOI 10.1016/j.jchf.2015.05.003
  3. Brinkman K, 2000, CURR OPIN INFECT DIS, V13, P5, DOI 10.1097/00001432-200002000-00002
  4. Cardiologia S.B.d., 2010, REV BRAS HIPERTENS, V89, P1
  5. Centers for Disease Control and Prevention, 1994, MMWR RECOMM REP, V43, P1
  6. Cobo Fernando, 2012, Open Virol J, V6, P104, DOI 10.2174/1874357901206010104
  7. Delicio AM, 2018, REPROD HEALTH, V15, DOI 10.1186/s12978-018-0513-8
  8. Diógenes Maria Suely Bezerra, 2005, Arq. Bras. Cardiol., V85, P233, DOI 10.1590/S0066-782X2005001700002
  9. Dolgin M, 1994, NOMENCLATURE CRITERI, P253
  10. Dufour V, 2003, CLIN INFECT DIS, V36, pE127, DOI 10.1086/374665
  11. Fisher SD, 2005, AM HEART J, V150, P439, DOI 10.1016/j.ahj.2005.06.012
  12. Fisher SD, 2016, AM J CARDIOL, V117, P1194, DOI 10.1016/j.amjcard.2016.01.008
  13. Frerichs FCP, 2002, NEW ENGL J MED, V347, P1895, DOI 10.1056/NEJM200212053472320
  14. Grant C, 2005, CAN J PLANT SCI, V85, P3, DOI 10.4141/P03-182
  15. Guimarães Jorge Ilha, 2003, Arq. Bras. Cardiol., V81, P1, DOI 10.1590/S0066-782X2003001600001
  16. Idris NS, 2016, EUR HEART J, V37, P3610, DOI 10.1093/eurheartj/ehv702
  17. Idris NS, 2016, PLOS ONE, V11, DOI 10.1371/journal.pone.0146753
  18. Idris NS, 2015, EUR J PREV CARDIOL, V22, P1452, DOI 10.1177/2047487314560086
  19. Kampmann C, 2000, HEART, V83, P667, DOI 10.1136/heart.83.6.667
  20. L'Huillier AG, 2015, FRONT PEDIATR, V3, DOI 10.3389/fped.2015.00025
  21. Lipshultz SE, 2000, CIRCULATION, V102, P1542, DOI 10.1161/01.CIR.102.13.1542
  22. LIPSHULTZ SE, 1989, AM J CARDIOL, V63, P1489, DOI 10.1016/0002-9149(89)90014-3
  23. Lipshultz SE, 2013, J INT AIDS SOC, V16, DOI 10.7448/IAS.16.1.18597
  24. Lipshultz SE, 2013, JAMA PEDIATR, V167, P520, DOI 10.1001/jamapediatrics.2013.1206
  25. Lopez L, 2010, J AM SOC ECHOCARDIOG, V23, P465, DOI 10.1016/j.echo.2010.03.019
  26. Lumsden RH, 2016, BIOMED RES INT, V2016, DOI 10.1155/2016/8196560
  27. Meng QY, 2002, J ACQ IMMUN DEF SYND, V30, P306, DOI [10.1097/01.QAI.0000017995.56638.F8, 10.1097/00126334-200207010-00006]
  28. Ministerio da Saude, 2018, B EP HIV AIDS JUL 20
  29. Nduka CU, 2016, J HUM HYPERTENS, V30, P355, DOI 10.1038/jhh.2015.97
  30. Nunes H, 2003, AM J RESP CRIT CARE, V167, P1433, DOI 10.1164/rccm.200204-330OC
  31. Okeke NL, 2018, J CARD FAIL, V24, P496, DOI 10.1016/j.cardfail.2018.06.003
  32. Patel K, 2012, AIDS, V26, P2027, DOI 10.1097/QAD.0b013e3283578bfa
  33. Pitcher RD, 2014, PEDIATR PULM, V49, P581, DOI 10.1002/ppul.22840
  34. Pongprot Y, 2004, ANN TROP PAEDIATR, V24, P153, DOI 10.1179/027249304225013439
  35. Saito Makoto, 2015, J Infect Chemother, V21, P868, DOI 10.1016/j.jiac.2015.07.008
  36. Simon MA, 2014, J CARD FAIL, V20, P414, DOI 10.1016/j.cardfail.2014.03.009
  37. Tassiopoulos K, 2008, JAIDS-J ACQ IMM DEF, V47, P607, DOI 10.1097/QAI.0b013e3181648e16
  38. Williams PL, 2018, AIDS, V32, P2337, DOI [10.1097/QAD.0000000000001988, 10.1097/qad.0000000000001988]
  39. World Health Organization, HAEM CONC DIAGN AN A
  40. World Health Organization, GLOB SUMM HIV AIDS E
  41. Worm SW, 2010, J INFECT DIS, V201, P318, DOI 10.1086/649897
  42. Zuber JP, 2004, CLIN INFECT DIS, V38, P1178, DOI 10.1086/383037