Mutational signatures and increased retrotransposon insertions in xeroderma pigmentosum variant skin tumors

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Autores
CORRADI, Camila
VILAR, Juliana B.
BUZATTO, Vanessa C.
SOUZA, Tiago A. de
CASTRO, Ligia P.
MUNFORD, Veridiana
VECCHI, Rodrigo De
GALANTE, Pedro A. F.
ORPINELLI, Fernanda
MILLER, Thiago L. A.
Citação
CARCINOGENESIS, v.44, n.6, p.511-524, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This manuscript describes the genetic alterations found in the skin tumors of XP-V patients deficient in translesion synthesis. The alterations include mutation signatures and retrotransposition insertions, which provide mechanistic information about DNA polymerase eta functions. Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified. However, basal cell carcinomas also showed distinct C>A mutation spectra reflecting a mutational signature possibly related to sunlight-induced oxidative stress. Moreover, four samples carry different mutational signatures, with C>A mutations associated with tobacco chewing or smoking usage. Thus, XP-V patients should be warned of the risk of these habits. Surprisingly, higher levels of retrotransposon somatic insertions were also detected when the tumors were compared with non-XP skin tumors, revealing other possible causes for XP-V tumors and novel functions for the TLS polymerase eta in suppressing retrotransposition. Finally, the expected high mutation burden found in most of these tumors renders these XP patients good candidates for checkpoint blockade immunotherapy.
Palavras-chave
Referências
  1. Acharya N, 2019, CURR GENET, V65, P649, DOI 10.1007/s00294-018-0918-5
  2. Alexandrov LB, 2020, NATURE, V578, P94, DOI 10.1038/s41586-020-1943-3
  3. Ardeljan D, 2020, NAT STRUCT MOL BIOL, V27, P168, DOI 10.1038/s41594-020-0372-1
  4. Batista LFZ, 2009, MUTAT RES-REV MUTAT, V681, P197, DOI 10.1016/j.mrrev.2008.09.001
  5. Bergoglio V, 2013, J CELL BIOL, V201, P395, DOI 10.1083/jcb.201207066
  6. BRADSHAW VA, 1989, MOL GEN GENET, V218, P465, DOI 10.1007/BF00332411
  7. Burns KH, 2017, NAT REV CANCER, V17, P415, DOI 10.1038/nrc.2017.35
  8. Clayton EA, 2020, PHILOS T R SOC B, V375, DOI 10.1098/rstb.2019.0342
  9. Craig Daniel J, 2022, Cancer Treat Res Commun, V30, P100507, DOI 10.1016/j.ctarc.2021.100507
  10. Curtin F, 1998, BIOL PSYCHIAT, V44, P775, DOI 10.1016/S0006-3223(98)00043-2
  11. Deinlein T, 2017, EUR J CANCER, V83, P99, DOI 10.1016/j.ejca.2017.06.022
  12. Gardner EJ, 2017, GENOME RES, V27, P1916, DOI 10.1101/gr.218032.116
  13. Gehring JS, 2015, BIOINFORMATICS, V31, P3673, DOI 10.1093/bioinformatics/btv408
  14. Hanawalt PC, 2008, NAT REV MOL CELL BIO, V9, P958, DOI 10.1038/nrm2549
  15. Hancks DC, 2016, MOBILE DNA-UK, V7, DOI 10.1186/s13100-016-0065-9
  16. Haracska L, 2000, NAT GENET, V25, P458, DOI 10.1038/78169
  17. Johnson RE, 1999, SCIENCE, V285, P263, DOI 10.1126/science.285.5425.263
  18. Karczewski KJ, 2020, NATURE, V581, P434, DOI 10.1038/s41586-020-2308-7
  19. Kleijer WJ, 2008, DNA REPAIR, V7, P744, DOI 10.1016/j.dnarep.2008.01.014
  20. KUNZ BA, 1990, J BACTERIOL, V172, P3009, DOI 10.1128/jb.172.6.3009-3014.1990
  21. Larkin J, 2015, NEW ENGL J MED, V373, P23, DOI [10.1056/NEJMoa1504030, 10.1056/NEJMc1509660]
  22. LEHMANN AR, 1975, P NATL ACAD SCI USA, V72, P219, DOI 10.1073/pnas.72.1.219
  23. Li H, 2009, BIOINFORMATICS, V25, P1754, DOI 10.1093/bioinformatics/btp324
  24. Manders F, 2022, BMC GENOMICS, V23, DOI 10.1186/s12864-022-08357-3
  25. Martincorena I, 2015, SCIENCE, V348, P880, DOI 10.1126/science.aaa6806
  26. Masutani C, 1999, EMBO J, V18, P3491, DOI 10.1093/emboj/18.12.3491
  27. Maxwell PH, 2011, P NATL ACAD SCI USA, V108, P20376, DOI 10.1073/pnas.1100271108
  28. McCulloch SD, 2009, NUCLEIC ACIDS RES, V37, P2830, DOI 10.1093/nar/gkp103
  29. McIlwraith MJ, 2005, MOL CELL, V20, P783, DOI 10.1016/j.molcel.2005.10.001
  30. Menck CFM, 2014, GENET MOL BIOL, V37, P220, DOI 10.1590/S1415-47572014000200008
  31. Miller TLA, 2021, BIOINFORMATICS, V37, P419, DOI 10.1093/bioinformatics/btaa689
  32. Moreno NC, 2020, NUCLEIC ACIDS RES, V48, P1941, DOI 10.1093/nar/gkz1182
  33. Munford V, 2017, BRIT J DERMATOL, V176, P1270, DOI 10.1111/bjd.15084
  34. Muotri AR, 2005, NATURE, V435, P903, DOI 10.1038/nature03663
  35. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  36. Nikolaev S, 2022, ORPHANET J RARE DIS, V17, DOI 10.1186/s13023-022-02203-1
  37. O'Shea JP, 2013, NAT METHODS, V10, P1211, DOI [10.1038/NMETH.2646, 10.1038/nmeth.2646]
  38. Opletalova K, 2014, HUM MUTAT, V35, P117, DOI 10.1002/humu.22462
  39. Patterson MN, 2015, DNA REPAIR, V34, P18, DOI 10.1016/j.dnarep.2015.07.004
  40. Poplin R, 2018, NAT BIOTECHNOL, V36, P983, DOI 10.1038/nbt.4235
  41. Quinet A, 2016, NUCLEIC ACIDS RES, V44, P5717, DOI 10.1093/nar/gkw280
  42. Rodriguez-Martin B, 2020, NAT GENET, V52, P306, DOI 10.1038/s41588-019-0562-0
  43. Salomon G, 2018, BRIT J DERMATOL, V178, P1199, DOI 10.1111/bjd.16270
  44. Santiago KM, 2020, J EUR ACAD DERMATOL, V34, P2392, DOI 10.1111/jdv.16405
  45. Sarasin A., 2019, ENCY CANC, V3, P562, DOI 10.1016/B978-0-12-801238-3.65051-1
  46. Schrider DR, 2013, PLOS GENET, V9, DOI 10.1371/journal.pgen.1003242
  47. Schroeder JW, 2020, PLOS GENET, V16, DOI 10.1371/journal.pgen.1008987
  48. Schuch AP, 2017, FREE RADICAL BIO MED, V107, P110, DOI 10.1016/j.freeradbiomed.2017.01.029
  49. SHIBUTANI S, 1991, NATURE, V349, P431, DOI 10.1038/349431a0
  50. Snyder A, 2014, NEW ENGL J MED, V371, P2189, DOI 10.1056/NEJMoa1406498
  51. Stary A, 2003, J BIOL CHEM, V278, P18767, DOI 10.1074/jbc.M211838200
  52. Su Y, 2019, J BIOL CHEM, V294, P6073, DOI 10.1074/jbc.RA119.007925
  53. Sudmant PH, 2015, NATURE, V526, P75, DOI 10.1038/nature15394
  54. Sugiyama T, 2021, MUTAT RES-FUND MOL M, V823, DOI 10.1016/j.mrfmmm.2021.111762
  55. Torene RI, 2020, GENET MED, V22, P974, DOI 10.1038/s41436-020-0749-x
  56. Vaisman A, 2000, BIOCHEMISTRY-US, V39, P4575, DOI 10.1021/bi000130k
  57. Wang K, 2010, NUCLEIC ACIDS RES, V38, DOI 10.1093/nar/gkq603
  58. Yurchenko AA, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19633-9