Aerobic Exercise Modulates Visceral Adipose Tissue of Estrogen Deprived Rats in an Experimental Model of Dyslipidemia

Carregando...
Imagem de Miniatura
Citações na Scopus
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
THIEME MEDICAL PUBL INC
Autores
MAGALHAES, Walkyria Villegas
CHUCATA, Kemily Loren Barros
DSOUKI, Nuha Ahmad
VELOSO, Aparecida Gabriela Bexiga
FONSECA, Fernando Luiz Affonso
MAIFRINO, Laura Beatriz Mesiano
Citação
JOURNAL OF HEALTH AND ALLIED SCIENCES NU, v.14, n.1, p.71-77, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Introduction Menopausal women have an increase deposition of body fat and changes in the lipid profile, being especially susceptible to cardiovascular diseases, and type 2 diabetes. However, physical activity can mitigate this situation. Thus, the aim of the present study is to evaluate the effects of moderate aerobic exercise on visceral adipose tissue (VAT) of female LDL-receptor knockout ovariectomized mice.Methods We used 48 animals, divided into six groups ( n = 8/per group): sedentary control (SC), sedentary ovariectomized control (SCO), trained ovariectomized control (TCO), sedentary non-ovariectomized LDL-receptor knockout (KS), sedentary ovariectomized LDL-receptor knockout (KOS), and trained LDL-receptor knockout ovariectomized (KOT). We analyzed the VAT through morphometric and stereological parameters in hematoxylin and eosin stained sections. Additionally, we evaluated biochemical parameters as glucose, triglycerides, and total cholesterol. Finally, immunohistochemical techniques for matrix remodeling, inflammation, apoptosis, and oxidative stress were evaluated. Results We observed that menopause is related to increased visceral adiposity, inflammation, oxidative stress, macrophages activity, serum levels of glucose, triglycerides, and total cholesterol. However, exercise was effective in reducing these parameters, as well as being associated with increased vascularization of VAT and interstitial volume density. Conclusions Moderate exercise is a key factor in mitigating the effects of dyslipidemia in estrogen deprivation. However, further studies are needed to corroborate with our findings.
Palavras-chave
adiposity, dyslipidemia, experimental, menopause, treadmill
Referências
  1. Alfonso L, 2016, ITEA-INF TEC ECON AG, V112, P147
  2. Brianezi L, 2020, ARQ BRAS CARDIOL, V114, P100, DOI 10.5935/abc.20190223
  3. Brianezi L, 2017, REV BRAS MED ESPORTE, V23, P441, DOI 10.1590/1517-869220172306160084
  4. Burns RA, 2019, J AM GERIATR SOC, V67, P1036, DOI 10.1111/jgs.15780
  5. Crewe C, 2017, J CLIN INVEST, V127, P74, DOI 10.1172/JCI88883
  6. Cury J. C. S., 2019, Comparative Clinical Pathology, V28, P1797, DOI 10.1007/s00580-019-03022-w
  7. Rodrigues MFC, 2017, APPL PHYSIOL NUTR ME, V42, P605, DOI 10.1139/apnm-2016-0443
  8. Fatima LA, 2019, MOL CELL ENDOCRINOL, V498, DOI 10.1016/j.mce.2019.05.006
  9. Ghaben AL, 2019, NAT REV MOL CELL BIO, V20, P242, DOI 10.1038/s41580-018-0093-z
  10. Ibáñez CA, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01571
  11. Jung UJ, 2014, INT J MOL SCI, V15, P6184, DOI 10.3390/ijms15046184
  12. LARABEE CM, 2020, OBESITY NEUROIMMUNOM, V16, P30
  13. Maifrino LBM, 2019, ARQ BRAS CARDIOL, V112, P180, DOI 10.5935/abc.20180263
  14. Majdoubi A, 2016, CYTOKINE, V82, P112, DOI 10.1016/j.cyto.2016.01.023
  15. Mandarim-De-Lacerda CA, 2003, AN ACAD BRAS CIENC, V75, P469, DOI 10.1590/S0001-37652003000400006
  16. Marchon C, 2015, CELL PHYSIOL BIOCHEM, V35, P397, DOI 10.1159/000369705
  17. Medeiros CS, 2021, NUTRIENTS, V13, DOI 10.3390/nu13061969
  18. Murphy J, 2017, METABOLISM, V67, P31, DOI 10.1016/j.metabol.2016.09.009
  19. Naser B, 2022, CLIMACTERIC, V25, P220, DOI 10.1080/13697137.2021.1973993
  20. Novelle MG, 2017, SCI REP-UK, V7, DOI 10.1038/srep46194
  21. Pagnotti GM, 2019, NAT REV ENDOCRINOL, V15, P339, DOI 10.1038/s41574-019-0170-1
  22. Park HJ, 2017, FASEB J, V31
  23. Schaffer JE, 2016, J LIPID RES, V57, P1327, DOI 10.1194/jlr.E069880
  24. Sharma Monika, 2019, Immunometabolism, V1, DOI 10.20900/immunometab20190010
  25. Alvarez MS, 2014, BIOCHEM BIOPH RES CO, V447, P51, DOI 10.1016/j.bbrc.2014.03.104
  26. STANFORD KI, 2016, EXERCISE REGULATION, V5, P153
  27. Stanford KI, 2015, DIABETES, V64, P2361, DOI 10.2337/db15-0227
  28. Sutjarit N, 2018, J ETHNOPHARMACOL, V215, P167, DOI 10.1016/j.jep.2017.12.027
  29. Virtue S, 2015, INT J OBESITY, V39, P1151, DOI 10.1038/ijo.2015.34
  30. Walsh NP, 2011, EXERC IMMUNOL REV, V17, P64
  31. Welte MA, 2015, CURR BIOL, V25, pR470, DOI 10.1016/j.cub.2015.04.004
  32. Yoon H, 2021, MOL CELL, V81, P3708, DOI 10.1016/j.molcel.2021.08.027