Dynamic cerebral autoregulation: A marker of post-operative delirium?

Carregando...
Imagem de Miniatura
Citações na Scopus
21
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER IRELAND LTD
Citação
CLINICAL NEUROPHYSIOLOGY, v.130, n.1, p.101-108, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective: We investigated the potential association of cerebral autoregulation (CA) with postoperative delirium (PD), a common complication of cardiac surgery with cardiopulmonary bypass (CPB). Methods: In patients undergoing coronary artery bypass graft (CABG) surgery with CPB, cerebral blood flow velocity (CBFV) and blood pressure (BP) were continuously recorded during 5-min preoperatively (T1), after 24 h (T2), and 7 days after procedure (T3). Prospective multivariate logistic regression analysis was performed to determine the independent risk factors of PD. Autoregulation index (ARI) was calculated from the CBFV response to a step change in BP derived by transfer function analysis. Results: In 67 patients, mean age 64.3 +/- 9.5 years, CA was depressed at T2 as shown by values of ARI (3.9 +/- 1.7), compared to T1 (5.6 +/- 1.7) and T3 (5.5 +/- 1.8) (p < 0.001). Impaired CA was found in 37 (55%) patients at T2 and in 7 patients (20%) at T3. Lower ARI at T1 and T2 were predictors of PD (p = 0.003). Conclusion: Dynamic CA was impaired after CABG surgery with CPB and was a significant independent risk factor of PD. Significance: Assessment of CA before and after surgery could have considerable potential for early identification of patients at risk of PD, thus reducing poor outcomes and length of stay.
Palavras-chave
Cardiac surgery, Cardiopulmonary bypass, Cerebral blood flow, Left ventricular ejection fraction
Referências
  1. AASLID R, 1989, STROKE, V20, P45, DOI 10.1161/01.STR.20.1.45
  2. Alexandrov AV, 2006, STROKE, V37, P299, DOI 10.1161/01.STR.0000201891.41764.e5
  3. Bostwick JM, 2004, CLIN NEUROPHYSIOL, V115, P1487
  4. Brown CH, 2016, ANN THORAC SURG, V101, P1663, DOI 10.1016/j.athoracsur.2015.12.074
  5. Brown CH, 2014, CURR OPIN ANESTHESIO, V27, P117, DOI 10.1097/ACO.0000000000000061
  6. Caldas JR, 2017, INTERACT CARDIOV TH, V16, P1
  7. Caplan GA, 2014, J AM MED DIR ASSOC, V15, P355, DOI 10.1016/j.jamda.2013.12.079
  8. Christiansen CB, 2015, THORAC CARDIOVASC SU, V26
  9. Claassen JAHR, 2016, J CEREBR BLOOD F MET, V36, P665, DOI 10.1177/0271678X15626425
  10. Davis DHJ, 2012, BRAIN, V135, P2809, DOI 10.1093/brain/aws190
  11. Deiner S, 2009, Br J Anaesth, V103 Suppl 1, pi41, DOI 10.1093/bja/aep291
  12. Easley RB, 2013, NEUROL RES, V35, P344, DOI 10.1179/1743132812Y.0000000145
  13. Ely EW, 2001, JAMA-J AM MED ASSOC, V286, P2703, DOI 10.1001/jama.286.21.2703
  14. FOLSTEIN MF, 1975, J PSYCHIAT RES, V12, P189, DOI 10.1016/0022-3956(75)90026-6
  15. Hala M, 2007, MED HYPOTHESES, V68, P194, DOI 10.1016/j.mehy.2006.07.003
  16. Hori D, 2014, BRIT J ANAESTH, V113, P1009, DOI 10.1093/bja/aeu319
  17. Inouye SK, 2006, NEW ENGL J MED, V354, P1157, DOI 10.1056/NEJMra052321
  18. Inouye SK, 2001, ARCH INTERN MED, V161, P2467, DOI 10.1001/archinte.161.20.2467
  19. Luetz A, 2016, J CRIT CARE, V35, P168, DOI 10.1016/j.jcrc.2016.05.028
  20. Ma HY, 2016, STROKE, V47, P674, DOI 10.1161/STROKEAHA.115.011453
  21. Mailhot T, 2016, J CRIT CARE, V34, P17, DOI 10.1016/j.jcrc.2016.02.024
  22. Martin BJ, 2012, ANN THORAC SURG, V93, P1114, DOI 10.1016/j.athoracsur.2011.09.011
  23. MOODY DM, 1995, ANN THORAC SURG, V59, P1304, DOI 10.1016/0003-4975(95)00057-R
  24. Nasreddine ZS, 2005, J AM GERIATR SOC, V53, P695, DOI 10.1111/j.1532-5415.2005.53221.x
  25. Ono M, 2012, BRIT J ANAESTH, V109, P391, DOI 10.1093/bja/aes148
  26. Ono M, 2014, J THORAC CARDIOV SUR, V147, P483, DOI 10.1016/j.jtcvs.2013.07.069
  27. Otomo S, 2013, INTERACT CARDIOV TH, V17, P799, DOI 10.1093/icvts/ivt304
  28. Panerai RB, 1998, PHYSIOL MEAS, V19, P305, DOI 10.1088/0967-3334/19/3/001
  29. Panerai RB, 1998, STROKE, V29, P2341, DOI 10.1161/01.STR.29.11.2341
  30. Panerai RB, 2008, CARDIOVASC ENG, V8, P42, DOI 10.1007/s10558-007-9044-6
  31. Patel N, 2016, PHYSIOL MEAS, V37, P1485, DOI 10.1088/0967-3334/37/9/1485
  32. PAULSON OB, 1990, CEREBROVAS BRAIN MET, V2, P161
  33. Plaschke K, 2010, INTENS CARE MED, V36, P2081, DOI 10.1007/s00134-010-2004-4
  34. Preisman S, 2005, BRIT J ANAESTH, V95, P207, DOI 10.1093/bja/aei147
  35. Rudolph JL, 2009, CIRCULATION, V119, P229, DOI 10.1161/CIRCULATIONAHA.108.795260
  36. Saczynski JS, 2012, NEW ENGL J MED, V367, P30, DOI 10.1056/NEJMoa1112923
  37. Salinet ASM, 2014, CEREBROVASC DIS EXTR, V4, P186, DOI 10.1159/000366017
  38. Sammons EL, 2007, J APPL PHYSIOL, V103, P369, DOI 10.1152/japplphysiol.00271.2007
  39. Schramm P, 2012, CRIT CARE, V16, DOI 10.1186/cc11665
  40. Scolletta S, 2015, MINERVA ANESTESIOL, V81, P662
  41. Serrador JM, 2000, STROKE, V31, P1672, DOI 10.1161/01.STR.31.7.1672
  42. Siepe M, 2011, EUR J CARDIO-THORAC, V40, P200, DOI 10.1016/j.ejcts.2010.11.024
  43. TIECKS FP, 1995, STROKE, V26, P1014, DOI 10.1161/01.STR.26.6.1014
  44. van der Kooi AW, 2015, CHEST, V147, P94, DOI 10.1378/chest.13-3050
  45. Vincent JL, 1996, INTENS CARE MED, V22, P707, DOI 10.1007/BF01709751