Real-time ventilation and perfusion distributions by electrical impedance tomography during one-lung ventilation with capnothorax

Carregando...
Imagem de Miniatura
Citações na Scopus
48
Tipo de produção
article
Data de publicação
2015
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
REINIUS, H.
FREDEN, F.
JIDEUS, L.
CAMARGO, E. D. L. B.
HEDENSTIERNA, G.
LARSSON, A.
LENNMYR, F.
Citação
ACTA ANAESTHESIOLOGICA SCANDINAVICA, v.59, n.3, p.354-368, 2015
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundCarbon dioxide insufflation into the pleural cavity, capnothorax, with one-lung ventilation (OLV) may entail respiratory and hemodynamic impairments. We investigated the online physiological effects of OLV/capnothorax by electrical impedance tomography (EIT) in a porcine model mimicking the clinical setting. MethodsFive anesthetized, muscle-relaxed piglets were subjected to first right and then left capnothorax with an intra-pleural pressure of 19cm H2O. The contra-lateral lung was mechanically ventilated with a double-lumen tube at positive end-expiratory pressure 5 and subsequently 10cm H2O. Regional lung perfusion and ventilation were assessed by EIT. Hemodynamics, cerebral tissue oxygenation and lung gas exchange were also measured. ResultsDuring right-sided capnothorax, mixed venous oxygen saturation (P=0.018), as well as a tissue oxygenation index (P=0.038) decreased. There was also an increase in central venous pressure (P=0.006), and a decrease in mean arterial pressure (P=0.045) and cardiac output (P=0.017). During the left-sided capnothorax, the hemodynamic impairment was less than during the right side. EIT revealed that during the first period of OLV/capnothorax, no or very minor ventilation on the right side could be seen (33% vs. 97 +/- 3%, right vs. left, P=0.007), perfusion decreased in the non-ventilated and increased in the ventilated lung (18 +/- 2% vs. 82 +/- 2%, right vs. left, P=0.03). During the second OLV/capnothorax period, a similar distribution of perfusion was seen in the animals with successful separation (84 +/- 4% vs. 16 +/- 4%, right vs. left). ConclusionEIT detected in real-time dynamic changes in pulmonary ventilation and perfusion distributions. OLV to the left lung with right-sided capnothorax caused a decrease in cardiac output, arterial oxygenation and mixed venous saturation.
Palavras-chave
Referências
  1. Adler A, 1998, J APPL PHYSIOL, V84, P726
  2. Adler A, 1997, J APPL PHYSIOL, V83, P1762
  3. BENUMOF JL, 1987, ANESTHESIOLOGY, V67, P268, DOI 10.1097/00000542-198708000-00024
  4. Borges JB, 2012, J APPL PHYSIOL, V112, P225, DOI 10.1152/japplphysiol.01090.2010
  5. BROWN BH, 1985, CLIN PHYS PHYSIOL M, V6, P109, DOI 10.1088/0143-0815/6/2/002
  6. BROWN BH, 1992, CLIN PHYS PHYSIOL M, V13, P175, DOI 10.1088/0143-0815/13/A/034
  7. Campos J, 2014, MINERVA ANESTESIOL, V80, P83
  8. Chuang IC, 2010, LUNG, V188, P199, DOI 10.1007/s00408-010-9234-7
  9. Conacher Ian D, 2002, Best Pract Res Clin Anaesthesiol, V16, P53, DOI 10.1053/bean.2001.0207
  10. Costa ELV, 2008, CRIT CARE MED, V36, P1230, DOI 10.1097/CCM.0b013e31816a0380
  11. Costa ELV, 2009, INTENS CARE MED, V35, P1132, DOI 10.1007/s00134-009-1447-y
  12. Costa ELV, 2009, CURR OPIN CRIT CARE, V15, P18, DOI 10.1097/MCC.0b013e3283220e8c
  13. Deshpande SP, 2013, J CARDIOTHOR VASC AN, V27, P586, DOI 10.1053/j.jvca.2013.01.005
  14. DOMINO KB, 1983, ANESTHESIOLOGY, V59, P428, DOI 10.1097/00000542-198311000-00012
  15. El-Dawlatly Abdelazeem, 2002, J Anesth, V16, P13, DOI 10.1007/s540-002-8088-z
  16. FREDEN F, 1995, ANESTHESIOLOGY, V82, P1216, DOI 10.1097/00000542-199505000-00017
  17. Freden F, 1996, BRIT J ANAESTH, V77, P413
  18. Frerichs I, 1998, ACTA ANAESTH SCAND, V42, P721
  19. Frerichs I, 1999, IEEE T MED IMAGING, V18, P764, DOI 10.1109/42.802754
  20. Frerichs I, 1998, INTENS CARE MED, V24, P829, DOI 10.1007/s001340050673
  21. Frerichs I, 2002, IEEE T MED IMAGING, V21, P646, DOI 10.1109/TMI.2002.800585
  22. Frerichs I, 2007, PHYSIOL MEAS, V28, pS261, DOI 10.1088/0967-3334/28/7/S19
  23. HambraeusJonzon K, 1997, ANESTHESIOLOGY, V86, P308, DOI 10.1097/00000542-199702000-00006
  24. Harris RJD, 2002, ANAESTH INTENS CARE, V30, P86
  25. Hinz J, 2006, ACTA ANAESTH SCAND, V50, P331, DOI 10.1111/j.1399-6576.2006.00958.x
  26. Kiely DG, 1996, CHEST, V109, P1215, DOI 10.1378/chest.109.5.1215
  27. Kozian A, 2008, BRIT J ANAESTH, V100, P549, DOI 10.1093/bja/aen021
  28. MEIER P, 1954, J APPL PHYSIOL, V6, P731
  29. Miller MR, 2005, EUR RESPIR J, V26, P153, DOI 10.1183/09031936.05.00034505
  30. Mukhtar AM, 2008, ANESTH ANALG, V106, P84, DOI 10.1213/01.ane.0000297419.02643.d7
  31. Nilsson MCA, 2012, INTENS CARE MED, V38, P509, DOI 10.1007/s00134-012-2482-7
  32. Ohtsuka T, 2001, SURG ENDOSC-ULTRAS, V15, P1327, DOI 10.1007/s00464-001-0037-z
  33. PIRLO AF, 1981, J APPL PHYSIOL, V50, P1022
  34. PRICE HL, 1960, ANESTHESIOLOGY, V21, P652, DOI 10.1097/00000542-196011000-00009
  35. Richard JC, 2009, CRIT CARE, V13, DOI 10.1186/cc7900
  36. Sirak J, 2008, ANN THORAC SURG, V86, P1960, DOI 10.1016/j.athoracsur.2008.07.066
  37. Strang CM, 2010, BRIT J ANAESTH, V105, P691, DOI 10.1093/bja/aeq211
  38. Strang CM, 2013, MINERVA ANESTESIOL, V79, P617
  39. THOMPSON HK, 1964, CIRC RES, V14, P502
  40. TRAUTMAN ED, 1983, IEEE T BIO-MED ENG, V30, P141
  41. Victorino JA, 2004, AM J RESP CRIT CARE, V169, P791, DOI 10.1164/rccm.200301-133OC
  42. Witt L, 2012, PEDIATR ANESTH, V22, P793, DOI 10.1111/j.1460-9592.2011.03766.x
  43. Wolf RK, 2005, J THORAC CARDIOV SUR, V130, P797, DOI 10.1016/j.jtcvs.2005.03.041
  44. Wolfer RS, 1994, ANN THORAC SURG, V58, P407
  45. WOLFER RS, 1994, ANN THORAC SURG, V58, P404
  46. Zhao ZQ, 2009, INTENS CARE MED, V35, P1900, DOI 10.1007/s00134-009-1589-y