Chemosensory Dysfunction 3-Months After COVID-19, Medications and Factors Associated with Complete Recovery

Nenhuma Miniatura disponível
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SAGE PUBLICATIONS INC
Autores
SILVA, Jose Lucas Barbosa da
GAMEIRO, Juliana Gutschow
SCUSSIATO, Henrique Ochoa
RAMOS, Rafael Antonio Matias Ribeiro
CUNHA, Bruno Machado
FIGUEIREDO, Alan Felipe
TAKAHASHI, Eduardo Hideki
MARIN, Gabrielli Algazal
CAETANO, Igor Ruan de Araujo
Citação
ANNALS OF OTOLOGY RHINOLOGY AND LARYNGOLOGY, v.132, n.10, p.1177-1185, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: To examine the longitudinal prevalence and recovery of olfactory, gustatory, and oral chemesthetic deficits in a sizable cohort of SARS-CoV-2 infected persons using quantitative testing. To determine whether demographic and clinical factors, mainly the medications used after the COVID-19 diagnosis, influence the test measures. Methods: Prospective cohort in a hospital with primary, secondary, tertiary, and quaternary care. Patients with confirmed COVID-19 were tested during the acute infection phase (within 15 days of initial symptom, n = 187) and one (n = 113) and 3 months later (n = 73). The University of Pennsylvania Smell Identification Test, the Global Gustatory Test, and a novel test for chemesthesis were administered at all visits. Results: During the acute phase, 93% were anosmic or microsmic and 29.4% were hypogeusic. No one was ageusic. A deficit in oral chemesthesis was present in 13.4%. By 3 months, taste and chemesthesis had largely recovered, however, some degree of olfactory dysfunction remained in 54.8%. Remarkably, patients who had been treated with anticoagulants tended to have more olfactory improvement. Recovery was greater in men than in women, but was unrelated to disease severity, smoking behavior, or the use of various medications prior to, or during, COVID-19 infection. Conclusions: When using quantitative testing, olfactory disturbances were found in nearly all SARS-CoV-2 infected patients during the acute infection phase. Taste or chemesthetic deficits were low. Olfactory impairment persisted to some degree in over half of the patients at the 3-month follow-up evaluation, being more common in women and less common in those who had been treated earlier with anticoagulants.
Palavras-chave
smell, taste, COVID-19, SARS-CoV-2, olfaction disorders, olfactory perception, sex, diagnostic tests
Referências
  1. Addison AB, 2021, J ALLERGY CLIN IMMUN, V147, P1704, DOI 10.1016/j.jaci.2020.12.641
  2. da Silva JLB, 2019, ORAL ONCOL, V95, P115, DOI 10.1016/j.oraloncology.2019.06.008
  3. Billett HH, 2020, THROMB HAEMOSTASIS, V120, P1691, DOI 10.1055/s-0040-1720978
  4. Boscolo-Rizzo P, 2021, RHINOLOGY, V59, DOI 10.4193/Rhin21.249
  5. Boscolo-Rizzo P, 2021, CHEM SENSES, V46, DOI 10.1093/chemse/bjab006
  6. Bryce C, 2021, MODERN PATHOL, V34, P1456, DOI 10.1038/s41379-021-00793-y
  7. Cao AC, 2022, WORLD J OTORHIN-HEAD, V8, P249, DOI 10.1016/j.wjorl.2021.02.001
  8. Chivese T, 2021, TRAVEL MED INFECT DI, V43, DOI 10.1016/j.tmaid.2021.102135
  9. Doty RL, 2019, HAND CLINIC, V164, P455, DOI 10.1016/B978-0-444-63855-7.00025-3
  10. DOTY RL, 1984, PHYSIOL BEHAV, V32, P489, DOI 10.1016/0031-9384(84)90269-5
  11. Ercoli T, 2021, NEUROL SCI, V42, P4921, DOI 10.1007/s10072-021-05611-6
  12. Fornazieri MA, 2013, CLINICS, V68, P65, DOI 10.6061/clinics/2013(01)OA10
  13. González C, 2021, INT FORUM ALLERGY RH, V11, P1273, DOI 10.1002/alr.22798
  14. Hannum ME, 2020, CHEM SENSES, V45, P865, DOI [10.1101/2020.07.04.20145870, 10.1093/chemse/bjaa064]
  15. Hilbe J., 2017, LOGISTIC REGRESSION
  16. Hooper WC, 2004, CURR PHARM DESIGN, V10, P923, DOI 10.2174/1381612043452857
  17. Landis BN, 2003, CHEM SENSES, V28, P691, DOI 10.1093/chemse/bjg061
  18. Le Bon SD, 2021, EUR ARCH OTO-RHINO-L, V278, P3113, DOI 10.1007/s00405-020-06520-8
  19. Lechien JR, 2021, J INTERN MED, V290, P451, DOI 10.1111/joim.13209
  20. Leedman SR, 2021, J LARYNGOL OTOL, V135, P839, DOI 10.1017/S0022215121002085
  21. London B, 2008, ANN NEUROL, V63, P159, DOI 10.1002/ana.21293
  22. McBane RD II, 2020, MAYO CLIN PROC, V95, P2467, DOI 10.1016/j.mayocp.2020.08.030
  23. McDonald S.T., 2016, Chemesthesis: Chemical Touch in Food and Eating
  24. Meini S, 2020, EUR ARCH OTO-RHINO-L, V277, P3519, DOI 10.1007/s00405-020-06102-8
  25. Moein ST, 2020, INT FORUM ALLERGY RH, V10, P1127, DOI 10.1002/alr.22680
  26. Moein ST, 2020, INT FORUM ALLERGY RH, V10, P944, DOI 10.1002/alr.22587
  27. Niklassen AS, 2021, LARYNGOSCOPE, V131, P1095, DOI 10.1002/lary.29383
  28. Oldenburg CE, 2021, JAMA-J AM MED ASSOC, V326, P490, DOI 10.1001/jama.2021.11517
  29. Padhy BM, 2020, J PHARM PHARM SCI, V23, P462, DOI 10.18433/jpps31457
  30. Parma V, 2020, CHEM SENSES, V45, P609, DOI 10.1093/chemse/bjaa041
  31. Perl DP, 2021, NEW ENGL J MED, V384, P481, DOI 10.1056/NEJMc2033369
  32. Petrocelli M, 2021, J LARYNGOL OTOL, V135, P436, DOI 10.1017/S002221512100116X
  33. Petrocelli M, 2020, J LARYNGOL OTOL, V134, P571, DOI 10.1017/S0022215120001358
  34. Rodrigues C, 2021, INT J ANTIMICROB AG, V58, DOI 10.1016/j.ijantimicag.2021.106428
  35. Shahrvini B, 2021, INT FORUM ALLERGY RH, V11, P1280, DOI 10.1002/alr.22802
  36. Soter A, 2008, LARYNGOSCOPE, V118, P611, DOI 10.1097/MLG.0b013e318161e53a
  37. Ugurlu BN, 2021, EUR ARCH OTO-RHINO-L, V278, P2363, DOI 10.1007/s00405-020-06516-4
  38. Vaira LA, 2020, J LARYNGOL OTOL, V134, P703, DOI 10.1017/S0022215120001826
  39. Vaira LA, 2021, RHINOLOGY, V59, DOI 10.4193/Rhin20.515
  40. Vaira LA, 2020, HEAD NECK-J SCI SPEC, V42, P1252, DOI 10.1002/hed.26204
  41. Wu ZY, 2020, JAMA-J AM MED ASSOC, V323, P1239, DOI 10.1001/jama.2020.2648
  42. Xydakis MS, 2021, LANCET NEUROL, V20, P753, DOI 10.1016/S1474-4422(21)00182-4