Electrophysiological study of neuromuscular junction in congenital myasthenic syndromes, congenital myopathies, and chronic progressive external ophthalmoplegia

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
PERGAMON-ELSEVIER SCIENCE LTD
Citação
NEUROMUSCULAR DISORDERS, v.30, n.11, p.897-903, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
This study was designed to analyze the sensitivity, specificity, and accuracy of jitter parameters combined with repetitive nerve stimulation (RNS) in congenital myasthenic syndrome (CMS), chronic progressive external ophthalmoplegia (CPEO), and congenital myopathies (CM). Jitter was obtained with a concentric needle electrode during voluntary activation of the Orbicularis Oculi muscle in CMS ( n = 21), CPEO ( n = 20), and CM ( n = 18) patients and in controls ( n = 14). RNS (3 Hz) was performed in six different muscles for all patients ( Abductor Digiti Minimi, Tibialis Anterior, upper Trapezius, Deltoideus, Orbicularis Oculi, and Nasalis). RNS was abnormal in 90.5% of CMS patients and in only one CM patient. Jitter was abnormal in 95.2% of CMS, 20% of CPEO, and 11.1% of CM patients. No patient with CPEO or CM presented a mean jitter higher than 53.6 mu s or more than 30% abnormal individual jitter (> 45 mu s). No patient with CPEO or CM and mild abnormal jitter values presented an abnormal decrement. Jitter and RNS assessment are valuable tools for diagnosing neuromuscular transmission abnormalities in CMS patients. A mean jitter value above 53.6 mu s or the presence of more than 30% abnormal individual jitter (> 45 mu s) strongly suggests CMS compared with CPEO and CM.
Palavras-chave
Congenital myasthenic syndrome, Jitter, Single-fiber electromyography, Concentric needle electrode, Chronic progressive external ophthalmoplegia, Congenital myopathies
Referências
  1. Neto OA, 2017, CAN J NEUROL SCI, V44, P125, DOI 10.1017/cjn.2016.322
  2. Bevilacqua JA, 2017, EUR J TRANSL MYOL, V27, P166, DOI 10.4081/ejtm.2017.6832
  3. Cruz PMR, 2018, INT J MOL SCI, V19, DOI 10.3390/ijms19061677
  4. Cruz-Martinez A, 1996, MUSCLE NERVE, V19, P1069
  5. Ding QY, 2018, J CLIN NEUROSCI, V48, P229, DOI 10.1016/j.jocn.2017.10.084
  6. Elahi B, 2019, MUSCLE NERVE, V59, P475, DOI 10.1002/mus.26393
  7. Engel AG, 2015, LANCET NEUROL, V14, P420, DOI 10.1016/S1474-4422(14)70201-7
  8. Ertas M, 2000, MUSCLE NERVE, V23, P715
  9. Estephan EDP, 2018, NEUROMUSCULAR DISORD, V28, P961, DOI 10.1016/j.nmd.2018.08.007
  10. Estephan ED, 2018, J NEUROL, V265, P708, DOI 10.1007/s00415-018-8736-8
  11. FIDZIANSKA A, 1994, J NEUROL SCI, V124, P83
  12. Finsterer J, 2019, ORPHANET J RARE DIS, V14, DOI 10.1186/s13023-019-1025-5
  13. Gibbs EM, 2013, J MOL MED, V91, P727, DOI 10.1007/s00109-013-0994-4
  14. Girlanda P, 1999, CLIN NEUROPHYSIOL, V110, P1284, DOI 10.1016/S1388-2457(98)00041-8
  15. Howard JF, 2013, PHYS MED REH CLIN N, V24, P169, DOI 10.1016/j.pmr.2012.08.013
  16. Illingworth MA, 2014, NEUROMUSCULAR DISORD, V24, P707, DOI 10.1016/j.nmd.2014.05.003
  17. Klein A, 2013, NEUROMUSCULAR DISORD, V23, P883, DOI 10.1016/j.nmd.2013.06.002
  18. Kokubun N, 2012, CLIN NEUROPHYSIOL, V123, P613, DOI 10.1016/j.clinph.2011.07.044
  19. Kouyoumdjian JA, 2011, MUSCLE NERVE, V44, P912, DOI 10.1002/mus.22203
  20. Machado FCN, 2017, MUSCLE NERVE, V55, P190, DOI 10.1002/mus.25229
  21. Mihaylova V, 2010, J NEUROL NEUROSUR PS, V81, P973, DOI 10.1136/jnnp.2009.177816
  22. Nicolau S, 2019, MUSCLE NERVE, V60, P648, DOI 10.1002/mus.26676
  23. Pitt MC, 2017, CLIN NEUROPHYSIOL, V128, P290, DOI 10.1016/j.clinph.2016.11.020
  24. Robb SA, 2011, NEUROMUSCULAR DISORD, V21, P379, DOI 10.1016/j.nmd.2011.02.012
  25. Salih MA, 2011, J NEURO-OPHTHALMOL, V31, P42, DOI 10.1097/WNO.0b013e3181f50bea
  26. SANDERS DB, 1986, MUSCLE NERVE, V9, P809, DOI 10.1002/mus.880090904
  27. Sanders DB, 2019, CLIN NEUROPHYSIOL, V130, P1417, DOI 10.1016/j.clinph.2019.04.005
  28. Sanders DB, 2013, MUSCLE NERVE, V47, P317, DOI 10.1002/mus.23709
  29. Stalberg E.V., 2010, SINGLE FIBER ELECTRO
  30. Stalberg Erik, 2018, J Neuromuscul Dis, V5, P225, DOI 10.3233/JND-170289
  31. Stalberg E, 2017, CLIN NEUROPHYSIOL, V128, P2233, DOI 10.1016/j.clinph.2017.09.001
  32. Stalberg E, 2016, MUSCLE NERVE, V53, P351, DOI 10.1002/mus.24750
  33. Tidswell T, 2007, MUSCLE NERVE, V35, P107, DOI 10.1002/mus.20637
  34. TRONTELJ JV, 1988, J NEUROL NEUROSUR PS, V51, P814, DOI 10.1136/jnnp.51.6.814
  35. UKACHOKE C, 1994, CAN J NEUROL SCI, V21, P125, DOI 10.1017/S0317167100049040
  36. Valls-Canals J, 2003, MUSCLE NERVE, V28, P501, DOI 10.1002/mus.10426
  37. Vanhaesebrouck AE, 2019, CURR OPIN NEUROL, V32, P696, DOI 10.1097/WCO.0000000000000736
  38. WALLGRENPETTERSSON C, 1989, MUSCLE NERVE, V12, P587, DOI 10.1002/mus.880120710
  39. Winder TL, 2020, NEUROL-GENET, V6, DOI 10.1212/NXG.0000000000000412
  40. Zafeiriou DI, 2004, BRAIN DEV-JPN, V26, P47, DOI 10.1016/S0387-7604(03)00096-2