Human papillomavirus type 18 E5 oncoprotein cooperates with E6 and E7 in promoting cell viability and invasion and in modulating the cellular redox state

Carregando...
Imagem de Miniatura
Citações na Scopus
15
Tipo de produção
article
Data de publicação
2020
Título da Revista
ISSN da Revista
Título do Volume
Editora
FUNDACO OSWALDO CRUZ
Autores
HOCHMANN, Jimena
PARIETTI, Felipe
MARTINEZ, Jennyfer
LOPEZ, Ana C.
CARRENO, Mara
QUIJANO, Celia
BOCCARDO, Enrique
MOLLER, Matias N.
MIRAZO, Santiago
Citação
MEMORIAS DO INSTITUTO OSWALDO CRUZ, v.115, article ID e190405, 11p, 2020
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BACKGROUND High-risk human papillomaviruses (HR-HPVs) are the etiological agents of cervical cancer. Among them, types 16 and 18 are the most prevalent worldwide. The HPV genome encodes three oncoproteins (E5, E6, and E7) that possess a high transformation potential in culture cells when transduced simultaneously. In the present study, we analysed how these oncoproteins cooperate to boost key cancer cell features such as uncontrolled cell proliferation, invasion potential, and cellular redox state imbalance. Oxidative stress is known to contribute to the carcinogenic process, as reactive oxygen species (ROS) constitute a potentially harmful by-product of many cellular reactions, and an efficient clearance mechanism is therefore required. Cells infected with HR-HPVs can adapt to oxidative stress conditions by upregulating the formation of endogenous antioxidants such as catalase, glutathione (GSH), and peroxiredoxin (PRX). OBJECTIVES The primary aim of this work was to study how these oncoproteins cooperate to promote the development of certain cancer cell features such as uncontrolled cell proliferation, invasion potential, and oxidative stress that are known to aid in the carcinogenic process. METHODS To perform this study, we generated three different HaCaT cell lines using retroviral transduction that stably expressed combinations of HPV-18 oncogenes that included HaCaT E5-18, HaCaT E6/E7-18, and HaCaT E5/E6/E7-18. FINDINGS Our results revealed a statistically significant increment in cell viability as measured by MTT assay, cell proliferation, and invasion assays in the cell line containing the three viral oncogenes. Additionally, we observed that cells expressing HPV-18 E5/E6/E7 exhibited a decrease in catalase activity and a significant augmentation of GSII and PRX1 levels relative to those of E5, E6/E7, and HaCaT cells. MAIN CONCLUSIONS This study demonstrates for the first time that HPV-18 E5, E6, and E7 oncoproteins can cooperate to enhance malignant transformation.
Palavras-chave
HPV-18 E5/E6/E7, cooperation, cell invasion, redox state, cellular transformation, reactive oxygen species
Referências
  1. AEBI H, 1984, METHOD ENZYMOL, V105, P121
  2. Al Moustafa AE, 2015, CELL ADHES MIGR, V9, P392, DOI 10.1080/19336918.2015.1042197
  3. Amen F, 2017, ARCH BIOCHEM BIOPHYS, V621, P31, DOI 10.1016/j.abb.2017.02.012
  4. Antunes F, 2000, FEBS LETT, V475, P121, DOI 10.1016/S0014-5793(00)01638-0
  5. Artaza-Irigaray C, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01676
  6. AUSUBEL FM, 2001, [No title captured]
  7. BEDELL MA, 1987, J VIROL, V61, P3635, DOI 10.1128/JVI.61.11.3635-3640.1987
  8. Boulenouar S, 2010, CARCINOGENESIS, V31, P473, DOI 10.1093/carcin/bgp281
  9. Burd EM, 2003, CLIN MICROBIOL REV, V16, P1, DOI 10.1128/CMR.16.1.1-17.2003
  10. Cabeca TK, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20010198
  11. Calaf Gloria M, 2018, Oncotarget, V9, P23824, DOI 10.18632/oncotarget.25323
  12. Chan CY, 2019, J PSYCHOSOM OBST GYN, DOI 10.1080/0167482X.2019.1639042
  13. Chandel NS, 2000, J BIOL CHEM, V275, P25130, DOI 10.1074/jbc.M001914200
  14. Chang JL, 2001, J BIOMED SCI, V8, P206, DOI 10.1007/BF02256414
  15. Clifford GM, 2003, BRIT J CANCER, V88, P63, DOI 10.1038/sj.bjc.6600688
  16. Comito G, 2011, FREE RADICAL BIO MED, V51, P893, DOI 10.1016/j.freeradbiomed.2011.05.042
  17. Cruz-Gregorio A, 2018, INT J BIOL SCI, V14, P21, DOI 10.7150/ijbs.21547
  18. de Sanjose S, 2007, LANCET INFECT DIS, V7, P453, DOI 10.1016/S1473-3099(07)70158-5
  19. DiMaio D, 2013, VIROLOGY, V445, P99, DOI 10.1016/j.virol.2013.05.006
  20. DURST M, 1987, ONCOGENE, V1, P251
  21. Durzynska J, 2017, MUTAT RES-REV MUTAT, V772, P36, DOI 10.1016/j.mrrev.2016.09.006
  22. Federico A, 2007, INT J CANCER, V121, P2381, DOI 10.1002/ijc.23192
  23. Fosang AJ, 2015, J BIOL CHEM, V290, P29692, DOI 10.1074/jbc.E115.000002
  24. French D, 2013, MOL CANCER, V12, DOI 10.1186/1476-4598-12-38
  25. Glasauer A, 2014, BIOCHEM PHARMACOL, V92, P90, DOI 10.1016/j.bcp.2014.07.017
  26. Griffin LM, 2014, METHODS MOL BIOL, V1195, P219, DOI 10.1007/7651_2013_49
  27. Halliwell B, 2015, FREE RADICAL BIO MED, P284
  28. HAWLEYNELSON P, 1989, EMBO J, V8, P3905, DOI 10.1002/j.1460-2075.1989.tb08570.x
  29. Hochmann J, 2016, VIROLOGY, V492, P145, DOI 10.1016/j.virol.2016.02.015
  30. Hu DX, 2015, ARCH GYNECOL OBSTET, V292, P1345, DOI 10.1007/s00404-015-3787-x
  31. Kivi N, 2008, ONCOGENE, V27, P2532, DOI 10.1038/sj.onc.1210916
  32. LEECHANACHAI P, 1992, ONCOGENE, V7, P19
  33. LEHMAN TA, 1993, CARCINOGENESIS, V14, P833, DOI 10.1093/carcin/14.5.833
  34. Lei H, 2009, J BIOL CHEM, V284, P6329, DOI 10.1074/jbc.M808426200
  35. Lennicke C, 2015, CELL COMMUN SIGNAL, V13, DOI 10.1186/s12964-015-0118-6
  36. Leon-Buitimea A, 2012, TOXICOL LETT, V209, P161, DOI 10.1016/j.toxlet.2011.12.009
  37. Li N, 2011, INT J CANCER, V128, P927, DOI 10.1002/ijc.25396
  38. Liao SJ, 2013, ONCOL REP, V29, P95, DOI 10.3892/or.2012.2106
  39. Loboda A, 2016, CELL MOL LIFE SCI, V73, P3221, DOI 10.1007/s00018-016-2223-0
  40. Magal SS, 1998, INT J CANCER, V75, P96
  41. Malhotra D, 2010, NUCLEIC ACIDS RES, V38, P5718, DOI 10.1093/nar/gkq212
  42. Marullo R, 2015, CARCINOGENESIS, V36, P1397, DOI 10.1093/carcin/bgv126
  43. Moody CA, 2010, NAT REV CANCER, V10, P550, DOI 10.1038/nrc2886
  44. Munger K, 2002, VIRUS RES, V89, P213, DOI 10.1016/S0168-1702(02)00190-9
  45. MUNGER K, 1989, EMBO J, V8, P4099, DOI 10.1002/j.1460-2075.1989.tb08594.x
  46. MUNGER K, 1989, J VIROL, V63, P4417
  47. Bello JOM, 2015, VIRUSES-BASEL, V7, P4734, DOI 10.3390/v7082842
  48. Orrico F, 2018, FREE RADICAL BIO MED, V121, P231, DOI 10.1016/j.freeradbiomed.2018.05.006
  49. Paavonen J, 2007, INT J INFECT DIS, V11, pS3, DOI 10.1016/S1201-9712(07)60015-0
  50. Parida S, 2014, EUR J CANCER PREV, V23, P432, DOI 10.1097/CEJ.0000000000000023
  51. SCHEFFNER M, 1990, CELL, V63, P1129, DOI 10.1016/0092-8674(90)90409-8
  52. SCHLEGEL R, 1988, EMBO J, V7, P3181, DOI 10.1002/j.1460-2075.1988.tb03185.x
  53. Stoppler H, 1997, J BIOL CHEM, V272, P13332, DOI 10.1074/jbc.272.20.13332
  54. TAKAHASHI JA, 1992, J NEUROSURG, V76, P792, DOI 10.3171/jns.1992.76.5.0792
  55. Tsai TJ, 2018, ANAL CELL PATHOL, V2018, DOI 10.1155/2018/8623937
  56. TURNER MA, 1995, CLIN EXP METASTAS, V13, P260, DOI 10.1007/BF00133481
  57. Valko M, 2007, INT J BIOCHEM CELL B, V39, P44, DOI 10.1016/j.biocel.2006.07.001
  58. Venuti A, 2011, MOL CANCER, V10, DOI 10.1186/1476-4598-10-140
  59. Wassmann S, 2004, HYPERTENSION, V44, P381, DOI 10.1161/01.HYP.0000142232.29764.a7
  60. Williams VM, 2014, J VIROL, V88, P6751, DOI 10.1128/JVI.03355-13
  61. Zhang B, 2015, GENET MOL RES, V14, P6605, DOI 10.4238/2015.June.18.3
  62. Zhang BY, 2002, J VIROL, V76, P220, DOI 10.1128/JVI.76.1.220-231.2002
  63. Zhang LF, 2015, MOL CANCER, V14, DOI 10.1186/s12943-015-0361-x
  64. zur Hausen H, 2002, NAT REV CANCER, V2, P342, DOI 10.1038/nrc798