Impact of periprocedural myocardial injury after transcatheter aortic valve implantation on long-term mortality: a meta-analysis of Kaplan-Meier derived individual patient data

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CARDIOVASCULAR MEDICINE, v.10, article ID 1228305, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Periprocedural myocardial injury (PPMI) frequently occurs after transcatheter aortic valve implantation (TAVI), although its impact on long-term mortality is uncertain.Methods: We performed a pooled analysis of Kaplan-Meier-derived individual patient data to compare survival in patients with and without PPMI after TAVI. Flexible parametric models with B-splines and landmark analyses were used to determine PPMI prognostic value. Subgroup analyses for VARC-2, troponin, and creatine kinase-MB (CK-MB)-defined PPMI were also performed.Results: Eighteen observational studies comprising 10,094 subjects were included. PPMI was associated with lower overall survival (OS) after two years (HR = 1.46, 95% CI 1.30-1.65, p < 0.01). This was also observed when restricting the analysis to overall VARC-2-defined PPMI (HR = 1.23, 95% CI 1.07-1.40, p < 0.01). For VARC-2 PPMI criteria and VARC-2 troponin-only, higher mortality was restricted to the first 2 months after TAVI (HR = 1.64, 95% CI 1.31-2.07, p < 0.01; and HR = 1.32, 95% CI 1.05-1.67, p = 0.02, respectively), while for VARC-2 defined CK-MB-only the increase in mortality was confined to the first 30 days (HR = 7.44, 95% CI 4.76-11.66, p < 0.01).Conclusion: PPMI following TAVI was associated with lower overall survival compared with patients without PPMI. PPMI prognostic impact is restricted to the initial months after the procedure. The analyses were consistent for VARC-2 criteria and for both biomarkers, yet CK-MB was a stronger prognostic marker of mortality than troponin.
Palavras-chave
aortic stenosis, transcatheter aortic valve implantation, transcatheter aortic valve replacement, periprocedural myocardial injury, biomarkers, valvular heart disease, structural heart disease
Referências
  1. Akodad M, 2019, J AM HEART ASSOC, V8, DOI 10.1161/JAHA.118.011111
  2. Barbash IM, 2013, AM J CARDIOL, V111, P1337, DOI 10.1016/j.amjcard.2012.12.059
  3. Buse GAL, 2010, EUR J CARDIO-THORAC, V37, P399, DOI 10.1016/j.ejcts.2009.05.054
  4. Chen WT, 2022, SCAND CARDIOVASC J, V56, P387, DOI 10.1080/14017431.2022.2139412
  5. Chorianopoulos E, 2014, CLIN RES CARDIOL, V103, P65, DOI 10.1007/s00392-013-0624-8
  6. Dagan M, 2022, CARDIOVASC REVASCULA, V35, P8, DOI 10.1016/j.carrev.2021.04.006
  7. De Marzo V, 2021, HEART VESSELS, V36, P1746, DOI 10.1007/s00380-021-01861-8
  8. Filomena D, 2023, MINERVA CARDIOL ANGI, V71, P77, DOI 10.23736/S2724-5683.21.05630-1
  9. Généreux P, 2021, J AM COLL CARDIOL, V77, P2717, DOI 10.1016/j.jacc.2021.02.038
  10. GRAMBSCH PM, 1994, BIOMETRIKA, V81, P515
  11. Guyot P, 2012, BMC MED RES METHODOL, V12, DOI 10.1186/1471-2288-12-9
  12. Guyot P, 2011, VALUE HEALTH, V14, P640, DOI 10.1016/j.jval.2011.01.008
  13. Haberthür D, 2011, EUR J CARDIO-THORAC, V39, P631, DOI 10.1016/j.ejcts.2010.07.045
  14. Kahlert P, 2016, EUROINTERVENTION, V11, P1401, DOI 10.4244/EIJY15M05_10
  15. Kappetein AP, 2012, J AM COLL CARDIOL, V60, P1438, DOI [10.1016/j.jacc.2012.09.001, 10.1093/ejcts/ezs533]
  16. Kim WK, 2016, CLIN RES CARDIOL, V105, P379, DOI 10.1007/s00392-015-0949-6
  17. Köhler WM, 2016, CARDIOVASC THER, V34, P385, DOI 10.1111/1755-5922.12208
  18. Koifman E, 2017, AM J CARDIOL, V120, P850, DOI 10.1016/j.amjcard.2017.05.059
  19. Koskinas KC, 2016, J AM HEART ASSOC, V5, DOI 10.1161/JAHA.115.002430
  20. Liu N, 2021, BMC MED RES METHODOL, V21, DOI 10.1186/s12874-021-01308-8
  21. Michail M, 2018, CIRC-CARDIOVASC INTE, V11, DOI 10.1161/CIRCINTERVENTIONS.118.007106
  22. Michiels S, 2005, INT J TECHNOL ASSESS, V21, P119, DOI 10.1017/S0266462305050154
  23. Moher D., 2009, PLOS MED, V6
  24. Nara Y, 2018, INT HEART J, V59, P1296, DOI 10.1536/ihj.17-645
  25. Otto CM, 2021, CIRCULATION, V143, pe72, DOI [10.1161/CIR.0000000000000923, 10.1016/j.jacc.2020.11.018, 10.1161/CIR.0000000000001030]
  26. Palmerini Tullio, 2023, JACC Cardiovasc Interv, V16, P396, DOI 10.1016/j.jcin.2022.12.009
  27. Rahhab Z, 2019, STRUCT HEART, V3, P431, DOI 10.1080/24748706.2019.1639234
  28. Real C, 2023, JACC-CARDIOVASC INTE, V16, P1221, DOI 10.1016/j.jcin.2023.03.022
  29. Ribeiro HB, 2015, J AM COLL CARDIOL, V66, P2075, DOI 10.1016/j.jacc.2015.08.881
  30. Ribeiro HB, 2015, EUROINTERVENTION, V11, P205, DOI 10.4244/EIJV11I2A39
  31. Ribeiro HB, 2015, ANN THORAC SURG, V99, P2001, DOI 10.1016/j.athoracsur.2015.01.029
  32. Rodés-Cabau J, 2011, J AM COLL CARDIOL, V57, P1989, DOI 10.1016/j.jacc.2010.11.060
  33. Royston P, 2002, STAT MED, V21, P2175, DOI 10.1002/sim.1203
  34. Schindler M, 2021, J AM HEART ASSOC, V10, DOI 10.1161/JAHA.120.020739
  35. Sharma V, 2019, J AM HEART ASSOC, V8, DOI 10.1161/JAHA.118.011889
  36. Sinning JM, 2016, EUROINTERVENTION, V11, P1522, DOI 10.4244/EIJY15M02_02
  37. Sterne JAC, 2016, BMJ-BRIT MED J, V355, DOI 10.1136/bmj.i4919
  38. Stundl A, 2017, JACC-CARDIOVASC INTE, V10, P1550, DOI 10.1016/j.jcin.2017.05.029
  39. Takagi H, 2020, J CARDIOVASC SURG, V61, P98, DOI 10.23736/S0021-9509.19.11023-3
  40. Vahanian A, 2022, EUROINTERVENTION, V17, pE1126, DOI [10.1093/eurheartj/ehab395, 10.4244/EIJ-E-21-00009]
  41. Wei YH, 2017, STATA J, V17, P786, DOI 10.1177/1536867X1701700402
  42. Yong ZY, 2012, CIRC-CARDIOVASC INTE, V5, P415, DOI 10.1161/CIRCINTERVENTIONS.111.964882