Hyperoxia affects the regional pulmonary ventilation/perfusion ratio: an electrical impedance tomography study

Carregando...
Imagem de Miniatura
Citações na Scopus
14
Tipo de produção
article
Data de publicação
2014
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
LI, Y.
TESSELAAR, E.
BOHM, S. H.
SJOBERG, F.
JANEROT-SJOBERG, B.
Citação
ACTA ANAESTHESIOLOGICA SCANDINAVICA, v.58, n.6, p.716-725, 2014
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background The way in which hyperoxia affects pulmonary ventilation and perfusion is not fully understood. We investigated how an increase in oxygen partial pressure in healthy young volunteers affects pulmonary ventilation and perfusion measured by thoracic electrical impedance tomography (EIT). Methods Twelve semi-supine healthy male volunteers aged 21-36 years were studied while breathing room air and air-oxygen mixtures (FiO2) that resulted in predetermined transcutaneous oxygen partial pressures (tcPO2) of 20, 40 and 60kPa. The magnitude of ventilation (Zv) and perfusion (ZQ)-related changes in cyclic impedance variations, were determined using an EIT prototype equipped with 32 electrodes around the thorax. Regional changes in ventral and dorsal right lung ventilation (V) and perfusion (Q) were estimated, and V/Q ratios calculated. Results There were no significant changes in Zv with increasing tcPO2 levels. ZQ in the dorsal lung increased with increasing tcPO2 (P=0.01), whereas no such change was seen in the ventral lung. There was a simultaneous decrease in V/Q ratio in the dorsal region during hyperoxia (P=0.04). Two subjects did not reach a tcPO2 of 60kPa despite breathing 100% oxygen. Conclusion These results indicate that breathing increased concentrations of oxygen induces pulmonary vasodilatation in the dorsal lung even at small increases in FiO2. Ventilation remains unchanged. Local mismatch of ventilation and perfusion occurs in young healthy men, and the change in ventilation/perfusion ratio can be determined non-invasively by EIT.
Palavras-chave
Referências
  1. Adler A, 2012, PHYSIOL MEAS, V33, P679, DOI 10.1088/0967-3334/33/5/679
  2. Bak Z, 2007, ACTA PHYSIOL, V191, P15, DOI 10.1111/j.1748-1716-2007.01710.x
  3. Baker GA, 1934, ANN MATH STAT, V5, P113, DOI 10.1214/aoms/1177732710
  4. BARER GR, 1970, J PHYSIOL-LONDON, V211, P139
  5. BECKER H, 1995, J APPL PHYSIOL, V78, P696
  6. Becker HF, 1996, J APPL PHYSIOL, V81, P1683
  7. Bodenstein M, 2009, CRIT CARE MED, V37, P713, DOI 10.1097/CCM.0b013e3181958d2f
  8. Borges JB, 2012, J APPL PHYSIOL, V112, P225, DOI 10.1152/japplphysiol.01090.2010
  9. Brown B. H., 2003, Journal of Medical Engineering & Technology, V27, P97, DOI 10.1080/0309190021000059687
  10. BUSIJA DW, 1980, J APPL PHYSIOL, V48, P10
  11. Costa ELV, 2009, INTENS CARE MED, V35, P1132, DOI 10.1007/s00134-009-1447-y
  12. Costa ELV, 2009, CURR OPIN CRIT CARE, V15, P18, DOI 10.1097/MCC.0b013e3283220e8c
  13. Crawford P, 1997, J APPL PHYSIOL, V82, P1601
  14. Dautrebande L, 1921, J PHYSIOL-LONDON, V55, P296
  15. DEJOURS P, 1958, REV FR ETUD CLIN BIO, V3, P105
  16. EYUBOGLU BM, 1989, IEEE ENG MED BIOL, V8, P39, DOI 10.1109/51.32404
  17. Fagerberg A, 2009, ACTA ANAESTH SCAND, V53, P152, DOI 10.1111/j.1399-6576.2008.01847.x
  18. Fagerberg A, 2009, CRIT CARE, V13, DOI 10.1186/cc7741
  19. Ferrario D, 2012, IEEE T BIO-MED ENG, V59, P3000, DOI 10.1109/TBME.2012.2209116
  20. Frerichs I, 2002, IEEE T MED IMAGING, V21, P646, DOI 10.1109/TMI.2002.800585
  21. GAUTIER H, 1986, RESP PHYSIOL, V65, P181, DOI 10.1016/0034-5687(86)90049-6
  22. Grant CA, 2011, CRIT CARE, V15, DOI 10.1186/cc9985
  23. HambraeusJonzon K, 1997, ANESTHESIOLOGY, V86, P308, DOI 10.1097/00000542-199702000-00006
  24. Hellige NC, 2012, J APPL PHYSIOL, V112, P2127, DOI 10.1152/japplphysiol.00286.2012
  25. Hutchins P M, 1974, Circ Res, V40, P85
  26. JACKSON WF, 1987, AM J PHYSIOL, V253, pH1120
  27. KENMURE ACF, 1971, CARDIOVASC RES, V5, P483, DOI 10.1093/cvr/5.4.483
  28. Kiss B, 2002, MICROVASC RES, V64, P75, DOI 10.1006/mvre.2002.2402
  29. Kunst PWA, 1998, PHYSIOL MEAS, V19, P481, DOI 10.1088/0967-3334/19/4/003
  30. LARSON CP, 1962, J APPL PHYSIOL, V17, P417
  31. Lee SH, 2005, J INTERN MED, V258, P199, DOI 10.1111/j.1365-2796.2005.01542.x
  32. Ley S, 2007, INVEST RADIOL, V42, P283, DOI 10.1097/01.rli.0000258655.58753.5d
  33. Marquis François, 2006, J Clin Monit Comput, V20, P201, DOI 10.1007/s10877-006-9021-4
  34. Melsom MN, 1999, ACTA PHYSIOL SCAND, V166, P151
  35. Moerer O, 2011, CURR OPIN CRIT CARE, V17, P260, DOI 10.1097/MCC.0b013e3283463c9c
  36. Nguyen DT, 2012, PHYSIOL MEAS, V33, P695, DOI 10.1088/0967-3334/33/5/695
  37. Rousseau A, 2005, ACTA PHYSIOL SCAND, V183, P231, DOI 10.1111/j.1365-201X.2005.01405.x
  38. Sjoberg F, 2013, J INTERN MED, V274, P505, DOI 10.1111/joim.12139
  39. Smit HJ, 2004, EUR J APPL PHYSIOL, V92, P45, DOI 10.1007/s00421-004-1043-3
  40. Smit HJ, 2003, CHEST, V123, P1803, DOI 10.1378/chest.123.6.1803
  41. Vonk Noordegraaf A, 1998, Physiol Meas, V19, P263, DOI 10.1088/0967-3334/19/2/013
  42. WAGNER PD, 1974, J CLIN INVEST, V54, P54, DOI 10.1172/JCI107750
  43. Watson NA, 2000, EUR J ANAESTH, V17, P152, DOI 10.1046/j.1365-2346.2000.00640.x
  44. WEITZENBLUM E, 1989, AM REV RESPIR DIS, V139, P285