Zero expiratory pressure and low oxygen concentration promote heterogeneity of regional ventilation and lung densities

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
WILEY-BLACKWELL
Autores
PORRA, L.
PELLEGRINI, M.
TANNOIA, A.
DEROSA, S.
LARSSON, A.
BAYAT, S.
PERCHIAZZI, G.
HEDENSTIERNA, G.
Citação
ACTA ANAESTHESIOLOGICA SCANDINAVICA, v.60, n.7, p.958-968, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundIt is not well known what is the main mechanism causing lung heterogeneity in healthy lungs under mechanical ventilation. We aimed to investigate the mechanisms causing heterogeneity of regional ventilation and parenchymal densities in healthy lungs under anesthesia and mechanical ventilation. MethodsIn a small animal model, synchrotron imaging was used to measure lung aeration and regional-specific ventilation (sV.). Heterogeneity of ventilation was calculated as the coefficient of variation in sV. (CVsV.). The coefficient of variation in lung densities (CVD) was calculated for all lung tissue, and within hyperinflated, normally and poorly aerated areas. Three conditions were studied: zero end-expiratory pressure (ZEEP) and FIO2 0.21; ZEEP and FIO2 1.0; PEEP 12 cmH(2)O and F(I)O(2)1.0 (Open Lung-PEEP = OLP). ResultsThe mean tissue density at OLP was lower than ZEEP-1.0 and ZEEP-0.21. There were larger subregions with low sV. and poor aeration at ZEEP-0.21 than at OLP: 12.9 9.0 vs. 0.6 +/- 0.4% in the non-dependent level, and 17.5 +/- 8.2 vs. 0.4 +/- 0.1% in the dependent one (P = 0.041). The CVsV. of the total imaged lung at PEEP 12 cmH(2)O was significantly lower than on ZEEP, regardless of FIO2, indicating more heterogeneity of ventilation during ZEEP (0.23 +/- 0.03 vs. 0.54 +/- 0.37, P = 0.049). CVD changed over the different mechanical ventilation settings (P = 0.011); predominantly, CVD increased during ZEEP. The spatial distribution of the CVD calculated for the poorly aerated density category changed with the mechanical ventilation settings, increasing in the dependent level during ZEEP. ConclusionZEEP together with low FIO2 promoted heterogeneity of ventilation and lung tissue densities, fostering a greater amount of airway closure and ventilation inhomogeneities in poorly aerated regions.
Palavras-chave
Referências
  1. Arozullah AM, 2001, ANN INTERN MED, V135, P847
  2. Azeloglu EU, 2008, J APPL PHYSIOL, V105, P652, DOI 10.1152/japplphysiol.00958.2007
  3. Bayat S, 2001, PHYS MED BIOL, V46, P3287, DOI 10.1088/0031-9155/46/12/315
  4. Bayat S, 2006, J APPL PHYSIOL, V100, P1964, DOI 10.1152/japplphysiol.00594.2005
  5. Bayat S, 2009, AM J RESP CRIT CARE, V180, P296, DOI 10.1164/rccm.200808-1211OC
  6. Bayat S, 2013, ANESTHESIOLOGY, V119, P89, DOI 10.1097/ALN.0b013e318291c165
  7. Borges JB, 2014, CRIT CARE MED, V42, pE279, DOI 10.1097/CCM.0000000000000161
  8. Brewer KK, 2003, J APPL PHYSIOL, V95, P1926, DOI 10.1152/japplphysiol.00102.2003
  9. Cressoni M, 2014, AM J RESP CRIT CARE, V189, P149, DOI 10.1164/rccm.201308-1567OC
  10. DALE WA, 1952, AM J PHYSIOL, V170, P606
  11. DANTZKER DR, 1975, J APPL PHYSIOL, V38, P886
  12. Derosa S, 2013, J APPL PHYSIOL, V115, P1464, DOI 10.1152/japplphysiol.00763.2013
  13. Determann RM, 2010, CRIT CARE, V14, DOI 10.1186/cc8230
  14. Dos Santos CC, 2000, J APPL PHYSIOL, V89, P1645
  15. Emr B, 2013, JAMA SURG, V148, P1005, DOI 10.1001/jamasurg.2013.3746
  16. Futier E, 2014, LANCET, V384, P472, DOI 10.1016/S0140-6736(14)60894-1
  17. Futier E, 2013, NEW ENGL J MED, V369, P428, DOI 10.1056/NEJMoa1301082
  18. Gajic O, 2004, CRIT CARE MED, V32, P1817, DOI 10.1097/01.CCM.0000133019.52531.30
  19. GATTINONI L, 1994, JAMA-J AM MED ASSOC, V271, P1772, DOI 10.1001/jama.271.22.1772
  20. Hedenstierna G, 2012, MINERVA ANESTESIOL, V78, P1193
  21. Hemmes SNT, 2014, LANCET, V384, P495, DOI 10.1016/S0140-6736(14)60416-5
  22. Jia XM, 2008, CHEST, V133, P853, DOI 10.1378/chest.07-1121
  23. Joyce CJ, 1999, J APPL PHYSIOL, V86, P1116
  24. JOYCE CJ, 1993, J APPL PHYSIOL, V74, P1107
  25. Khuri SF, 2005, ANN SURG, V242, P341
  26. Khuri SF, 2005, ANN SURG, V242, P326, DOI 10.1097/01.sla.0000179621.33268.83
  27. Lellouche F, 2012, ANESTHESIOLOGY, V116, P1072, DOI 10.1097/ALN.0b013e3182522df5
  28. Levitt JE, 2012, CRIT CARE, V16, DOI 10.1186/cc11144
  29. Lipes J., 2012, CRIT CARE RES PRACT, V2012, DOI 10.1155/2012/416862
  30. MEAD J, 1970, J APPL PHYSIOL, V28, P596
  31. Monfraix S, 2005, PHYS MED BIOL, V50, P1, DOI 10.1088/0031-9155/50/1/001
  32. Perchiazzi G, 2014, RESP PHYSIOL NEUROBI, V201, P60, DOI 10.1016/j.resp.2014.07.001
  33. Porra L, 2004, J APPL PHYSIOL, V96, P1899, DOI 10.1152/japplphysiol.00866.2003
  34. Porra L, 2011, CRIT CARE MED, V39, P1731, DOI 10.1097/CCM.0b013e318218a375
  35. ROTHEN HU, 1995, ANESTHESIOLOGY, V82, P832, DOI 10.1097/00000542-199504000-00004
  36. ROTHEN HU, 1995, LANCET, V345, P1387, DOI 10.1016/S0140-6736(95)92595-3
  37. Rylander C, 2005, CRIT CARE, V9, pR165, DOI 10.1186/cc3058
  38. Serpa NA, 2012, JAMA-J AM MED ASSOC, V308, P1651, DOI 10.1001/JAMA.2012.13730
  39. European Union, 2010, OFF J EUR UN, V276, P33
  40. Villar J, 2010, CRIT CARE, V14, DOI 10.1186/cc8842
  41. Weiser TG, 2008, LANCET, V372, P139, DOI 10.1016/S0140-6736(08)60878-8
  42. Wellman TJ, 2012, J APPL PHYSIOL, V113, P947, DOI 10.1152/japplphysiol.01631.2011